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Abstract

We empirically document and investigate in a theory model why non-dilutive
contingent convertible bonds (CoCos) are predominantly prevalent in the market,
even though advocates of CoCos suggest such securities need to be dilutive upon
conversion to dampen bank shareholders’ risk-taking incentives. In an agency
model with two subsequent risk-taking actions, we emphasize that the design of
CoCos needs to strike a balance between mitigating ex-ante and ex-post risk-
taking incentives: while dilutive CoCos can deter ex-ante risk-taking and help
prevent the bank from being undercapitalized, penalizing existing shareholders
with strong dilution when the bank is already undercapitalized will aggravate
shareholders’ incentives to gamble for resurrection. We show that the design and
the efficacy of CoCos’ in promoting financial stability can crucially depend on the
equity capitalization of banks, with only well-capitalized banks optimally choosing
to issue dilutive CoCos.
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1 Introduction

Bank capital requirements constitute a cornerstone of prudential regulations, for bank
capital absorbs unexpected losses for retail depositors as well as correct risk-taking
incentives of bank shareholders. The scope of regulatory capital is broadened upon
the introduction of the Basel III framework, with the noticeable addition of contingent
convertible bonds (CoCos) to the additional Tier 1 capital (AT1) in many jurisdictions.
CoCos, as a type of hybrid security, feature payoffs contingent on the adequacy of a
bank’s common equity capital:1 a CoCo bond pays out like a regular bond while the
bank’s CET1 ratio exceeds a pre-specified threshold, but can be written off, in the case
of so-called principle-write-down (PWD) CoCos, or be converted into equity at a pre-set
share price, in the case of equity-conversion CoCos. The security, therefore, is ‘bailed
in’ when a bank’s common equity buffer drops and can help avoid any recapitalization
by the public authorities — potentially with taxpayers’ money and distorting banks’
risk-taking incentives. Regulatory authorities promote CoCos as capable of overcoming
banks’ reluctance to re-capitalize themselves using common equity in a crisis. With the
AT1 designation, CoCos quickly became a significant form of regulatory capital.2 Over
the period 2009-2020, banks outside of the US issued CoCos with a total face value of 580
billion US dollars, with global systemically important banks (G-SIBs) alone contributing
to about 50% of the total amount. In the UK, for example, CoCos make about 15% of
UK G-SIBs’ Tier 1 capital.

While it is fair to say that the basic design of CoCos unambiguously adds to the loss-
absorbing capacity of banks,3 whether CoCos can sufficiently correct bank shareholders’
risk-taking incentives heavily depends on how dilutive CoCos are when the trigger event
occurs. PWD CoCos enable a net transfer from CoCo investors to banks’ shareholders
when the bank’s CET1 ratio falls below its pre-specified threshold. The securities, ar-
guably, would provide little incentives for bank shareholders to limit their risk-taking and
avoid triggering the conversion. Yet, in the majority of cases, CoCos issued by Global
Systematically Important Banks (G-SIBs) are PWD CoCos (we present the details in
Panel B of Table 2). On the other hand, equity-conversion CoCos (mainly issued by
British banks) can, in principle, penalize a bank’s shareholders for their risk-taking by
diluting their existing shares. Until recently, it was not straightforward to tell whether
such equity-diversion CoCos are dilutive or not. As a consequence, it remained largely
unclear to what extent those equity-conversion CoCos can correct banks’ shareholders’
risk-taking incentives as initial proposals suggested — until the COVID crisis and its

1In practice, this is measured by the Common Equity Tier 1 (CET1) ratio, which is calculated as
common equity over the bank’s risk-weighted assets.

2The main exception is the US. For CoCos have earned no particularly favorable regulatory treatment
in the country, the US banks have not joined financial institutions from the rest of the world in the
issuance of CoCos.

3The write-off of PWD CoCos deleverages the bank and reduces the default risk on the bank’s senior
debt. Equity-conversion CoCos, on the other hand, add to the equity buffer upon their conversion.
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instantaneous (albeit relatively short-lived) aggregate negative impact on the stock mar-
ket. Upon the shock, we observe that the market price of banks’ common equity dropped
below the pre-set conversion price for most of the banks, and yet the CET1 ratio of the
banks remained far above the trigger level. In other words, in an actual banking crisis
where the banks’ CET1 ratios substantially decline and trigger CoCo conversion, it is
hard to believe that the prevailing price of banks’ common stock would be in excess of
the contract-specified conversion price.4

Bank Active CoCos % as Tier 1 capital Conversion price Market price of bank stock
(parent company) (equity conversion) (low in the COVID crisis)

HSBC 13 13.59% £2.70 per share £4.16 per share
Barclays 11 19.57% £1.65 per share £0.91 per share
Lloyds 7 17.37% £0.63 per share £0.31 per share
RBS 3 11.32% £2.28 per share £1.33 per share
Standard Chartered 4 12.80% £5.96 per share £4.09 per share

While CoCos may have fallen short of the original envisioning with their non-dilutive
features in practice, a closer look at data also reveals that it is not entirely bad news.
Examining banks’ risk-taking behavior using loan-level data from syndicated loan mar-
kets, we document that banks that issued CoCos (although non-dilutive) still show
more prudence in their lending strategies. In particular, among G-SIBs, we show that
loan spreads are on average higher when a lender has non-dilutive CoCos in its capital
structure. Since our loan-level regressions control for borrower-year fixed effects, any
difference in loan pricing is not a reflection of the borrower’s credit risks but rather
lenders’ risk appetite.

In light of the aforementioned two empirical observations, we aim to understand
in this paper why CoCos with no (or only weak) dilutive feature can be so prevalent
in practice and what implications that such non-dilutive designs hold for banks’ risk-
taking incentives. Our analyses also allow us to derive conditions under which banks have
incentives to issue dilutive CoCos that fully fulfill the securities’ potential in correcting
risk-taking incentives.

Our theory about the non-dilutive feature of CoCos builds on the basic observa-
tion that as going concern securities, CoCos need to be ‘bailed in’ when the bank that
triggered the conversion/write-down remains afloat — albeit low in common equity cap-
italization. However, such a state of low equity capitalization is where the shareholders’
incentives for risk-shifting are the strongest. Therefore, it is essential for CoCos to be

4In fact, among all G-SIBs that issued CoCos, HSBC was the only one whose stock price did not
breach the CoCo conversion price upon the start of the COVID crisis. However, even in this case, the
lowest point of the market price of the bank’s common equity (about £2.83 per share) was very close to
the bank’s CoCo conversion price (£2.70 per share). When the bank’s CET1 ratio drops dramatically in
an actual banking crisis, the prevailing stock market price is very likely to breach the conversion price.
Therefore, in our opinion, available evidence suggests all AT1 CoCo issued by G-SIBs are non-dilutive.
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designed to mute such risk-shifting incentives. Indeed, if a bank’s CoCos are highly dilu-
tive, there will be little left for existing shareholders upon the CoCos’ conversion. While
the bank can be more resilient with the new common equity from the CoCos’ conversion,
the existing shareholders will benefit little from it. Dilutive conversions, therefore, can
create incentives for existing shareholders to gamble for resurrection — in the hope of
steering the bank away from the trigger event.

We highlight that non-dilutive CoCos are rather unique in the sense that they are
junior to a bank’s existing common equity. Indeed, the write-down (in the case of PWD
CoCos) and the equity conversion at prices higher than the prevailing market price (in
the case of equity conversion CoCos) would lead to net transfers from CoCo investors
to existing equity holders. While this violates the absolute priority rule, it is such a
design that makes non-dilutive CoCos particularly powerful in preventing gambling for
resurrection as the bank draws near insolvency.

We analyze the design of CoCos in an agency model with two subsequent moral
hazard problems. First, the banker can achieve low risk in its loan portfolio with costly
screening and stay away from triggering CoCo conversion. When the risk is not ade-
quately managed in the first place, however, the bank’s cash flow could fall and trigger
CoCo conversion. Knowing privately whether the bank is heading towards the trigger
event, the banker can take a second moral hazard action: to gamble for resurrection.
That is, to take on a risky project that would restore the cash flow and conceal the lack
of screening to external investors, but at the risk of resulting in even bigger losses and
bankruptcy.

The design of CoCos as going-concern securities can be fully characterized by payoffs
to CoCo investors in a low state of the world (where the bank’s financial health weakens
and triggers CoCo conversion/write-down) and in a high state of the world (where the
bank’s financial health is strong and stays away from the trigger event), and setting
payoffs in both the low state and high state can involve trade-offs between discouraging
ex-ante vs. ex-post risk-taking. Let’s start with the low state. When CoCos are non-
dilutive upon conversion, they preserve shareholders’ value in the state where the bank’s
cash flow is low and thereby help prevent gambling for resurrection. Non-dilutive CoCos,
however, make screening less valuable to shareholders of the bank, which may end up
triggering conversion more often. A similar trade-off arises in setting the payoff in the
high state. Since the high payoff can be from proper screening or risk-taking, leaving
a high payoff to shareholders in the high state can induce effort in screening but may
also incentivize ex-post risk-shifting. In fact, the trade-offs in both states are connected
because non-dilutive CoCos must offer greater payoffs to CoCo investors in the high state
to satisfy the investors’ participation constraint. This implies a relatively low payoff to
shareholders in the high state and further reduces their ex-post risk-shifting incentives.

Our setting allows us to emphasize that the choice and the impact of (non-)dilutiveness
of CoCos on risk-taking can be contingent on the capital position of the bank. We show
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that a non-dilutive CoCo can generate higher pledgeability for the bank since the de-
sign only tackles one moral hazard problem — to prevent gambling for resurrection. A
trade-off can emerge when the bank chooses between dilutive and non-dilutive designs:
while the former can induce better screening and risk management that lead to a greater
NPV, the latter has the benefit of higher pledgeability and maximizing returns on equity.
As a result, non-dilutive CoCos can be particularly attractive to banks with a limited
amount of equity funding.

While we do not do a fully-fledged security design exercise to establish the optimality
of (non-dilutive) CoCos, we compare CoCos with other loss-absorbing securities such as
subordinated debt and non-voting shares in terms of correcting risk-taking incentives.5

We show that CoCos can contain bank risk-taking for a wider range of parameters than
each of the aforementioned securities and are never dominated by those securities for
any given capital structure of the bank. More precisely, compared to subordinated debt,
CoCos can avoid ex-post moral hazard when a bank has higher financing needs, and
therefore CoCos deliver relatively higher ex-ante value. When compared to non-voting
shares, CoCo increase the ex-ante funding opportunities of the bank because they are
more effective at mitigating both moral hazard problems by tailoring the contract to the
ex-post state of the bank, whereas equity inflexibly allocates a fixed fraction to outside
investors, independently of the outcome.

Our paper contributes to the burgeoning literature on CoCos in two ways. First,
it provides an explanation why CoCos are typically designed to be non-dilutive, con-
sistent with the prevalence of PWD CoCos and the likely low equity value upon con-
version for equity-conversion CoCos. Second, it sheds light on how designs of CoCos
are related/determined by banks’ balance sheet characteristics, which provides testable
empirical hypotheses for future studies. We emphasize that CoCos’ designs and their
implications for banks’ risk-taking behaviors need to be understood and assessed in the
context of banks’ broader capital structure. We predict that non-dilutive CoCos are
more likely to be issued by banks that are less-than-ideally capitalized.

Our paper also contributes to the debate on the regulatory treatment of CoCos.
While many promote CoCo as securities that can both absorb losses and prevent risk-
taking, others are less convinced and have criticized CoCos as yet another way for banks
to stretch their balance sheets and defer equity capitalization. Our model suggests that
the design and the effectiveness of CoCos largely depend on the equity capitalization
of banks. When a bank is sufficiently capitalized, it will optimally design its CoCos
to be dilutive, and the CoCos can provide incentives for both screening and avoiding
gambling for resurrection. On the other hand, when a bank is less capitalized, it will
choose its CoCo design to be non-dilutive, which avoids gambling resurrection and allows
more financing capacity for the bank. Our model suggests that, despite the generous

5Those securities are chosen for the comparison because they can absorb losses for senior debt holders
and are also considered regulatory capital.
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regulatory treatment with AT1 designation, CoCos are no substitutes for banks’ equity
capital. Instead, the effectiveness of CoCos in containing risk-taking relies on banks’
equity capitalization. To an extent, one can interpret the prevalence of non-dilutive
CoCos as indications that there are still room for further capitalization in the banking
sector.

Related Literature: Many researchers, e.g., ?? and ?, advocate CoCos as securities
that can automatically replenish bank capital and can correct distorted bank risk-taking
incentives with its equity dilution feature. ? formally show that, with a market trigger,
dilutive CoCos can penalize bank shareholders for risk-taking and promote financial
stability.6 ? argue that with a properly designed dilution feature, CoCos can eliminate
banks’ incentive of risk-shifting — even during periods of financial distress. However, in
light of the current market practice, the theories that promote CoCos’ effectiveness in
reducing bank risk-taking with strong equity dilution seem to have made an assumption
more optimistic than market reality.7

Researchers like Admati have cast doubt on CoCo’s role in promoting financial sta-
bility, considering the security yet another way for banks to satisfy capital regulations
with a debt-like instrument instead of equity, instrumental for banks to boost returns
on equity for their shareholders. ?, ? and ?, in particular, expressed concern that non-
dilutive CoCos can create even stronger risk-shifting incentives than subordinated debt
due to the wealth transfer from CoCo investors to bank shareholders upon conversion.
The concern can be rather valid since non-dilutive CoCos dominate the market. Our
empirical findings provide a somewhat more reassuring message, as the loan-level regres-
sions reveal that G-SIBs that issued CoCos (despite being non-dilutive) displayed more
prudence in their lending strategies. Accordingly, we make a theoretical conjecture that
strong dilution for an already undercapitalized bank can result in incentives for gambling
for resurrection, in a way that the non-dilutiveness of CoCos can be a ‘necessary evil’ in
containing risk-shifting.

Other than the non-dilutiveness of CoCos, the literature also raised other concerns
regarding the hybrid securities. In a global-games framework, ? argued that CoCos
with its triggering event could lead to panic-driven runs of creditors; the triggering of
the conversion can even generate negative information externalities for other banks with
correlated returns. Therefore, a security that is designed to reduce individual bank
insolvency risks can result in funding liquidity risk and potentially financial contagion.

6While both ? and ? focus on CoCos with market triggers, to the best of our knowledge, CoCos
issued by major banks all have regulatory triggers associated with banks’ CET1 ratio to qualify as AT1
capital.

7Some papers, like ? and ?, go further and consider CoCos as optimal securities with generic market
frictions. We have not aimed for a strong claim as such, since CoCos have been issued only by banks in
jurisdictions where the securities receive favorable regulatory treatment. Instead, we view CoCos as a
constrained solution and study them in the context of banks’ equity capitalization to understand how
such balance sheet characteristics can affect the design and effectiveness of CoCos.
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? document that in the only real-world case of bail-in with CoCos, the hybrid security
was not converted before the bank failed, casting doubt that whether CoCos are in fact
going-concern securities. ? point out that CoCo investors may hedge against the risk of
non-dilutive conversion on the side by short-selling the bank’s equity. When their short-
selling positions have a negative impact on the bank’s equity price, CoCos’ conversion
can be self-fulfilling.

The theory paper most related to ours is ?. The authors provide a theory to explain
the prevalence of PWD CoCos, but their setting is such that PWD CoCos are optimal
independent of a bank’s overall capital structure. We instead emphasize that, despite
the prevalence of non-dilutive CoCos, there can still be hope for CoCos to fulfill their full
potential by being dilutive and preventing ex-ante risk-taking. Whether we can achieve
that, as our model suggests, crucially depends on the equity capitalization of the bank.

On the empirical side, ? show that banks’ CDS spreads drop after their issuance of
CoCos, which may be attributed to the loss-absorbing capacity of the hybrid securities
or the correction of risk-taking incentives. ? also document negative correlations be-
tween the issuance of equity conversion CoCos and bank-level risks such as the volatility
of equity returns. Our empirical analysis goes one step further and establishes with
syndicated loan data pricing that banks financed by CoCos have indeed shown more
prudence in their loan pricing. Our theoretical prediction that non-dilutive CoCos can
reduce risk-taking by undercapitalized banks can find its empirical support in ?. The
author shows via the Liability Management Exercises during the crisis, European banks
booked capital gains at the cost of subordinated debt holders, leading to lower perceived
risks from the market.

The remaining of the paper is organized as follows. Section 2 sets out our basic
model. We study in Section 3 different CoCo designs – in terms of their feasibility,
their requirements for corresponding equity capital levels, and the impacts on existing
shareholder values. We show that non-dilutive CoCos can emerge for banks with an
intermediate level of equity capitalization. Section 4 compares CoCos with common
securities such as subordinated debt and new common equity. Section 5 provides an
empirical evaluation on whether CoCos have reduced bank risk-taking with syndicated
loan market data. Section 6 concludes.

2 The Model

The economy has three dates, t = 0, 1, 2, and comprises a bank, and four economic
agents: the owner/banker, retail depositors, the FDIC, and outside investors. All agents
are risk-neutral and the risk-free rate is zero.
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The baseline capital structure of the bank comprises deposits from retail depositors,
denoted by D, and equity. Equity holding is protected by limited liability. We assume
that deposit insurance has been already paid to FDIC and the retail deposits are safe.8

The banker maximizes her wealth at t = 0 by investing in a loan portfolio, which
requires 1 dollar of initial capital and has maturity t = 2. We assume D < 1, to avoid the
trivial case no equity and no external financing are needed. To finance the project, the
banker issues securities to outside investors, who break-even when they buy them. We
will consider three alternative types of securities: CoCo bonds, subordinated debt, and
non-voting shares. The banker has an endowment E ≥ 0, which is currently invested
in financial securities traded in competitive and arbitrage-free capital markets. Because
trading financial securities is a zero-NPV activity, the banker will invest in the loan
portfolio only if this is a positive-NPV decision and if E is higher than the financing gap
between the investment cost of $1 and the amount raised from depositors and external
investors.

Conditional on undertaking the project, in the first period of the investment process
the banker can screen the loans, which makes the portfolio risk-free with a sure return
R > 1. The screening effort is non-contractible, though. If the banker shirks, she
obtains an immediate private benefit, G, but leaves the bank exposed to the risk of loan
delinquencies and defaults. The effect of loan delinquencies is to reduce the return to
R′ ∈]0, R[ with probability p, while with probability (1−p) the return remains R, where
p ∈]0, 1[. However, shirking does not lead to default, as per the following assumption:

Assumption 1. We assume R′ > D.

Assumption 2. The expected loss on loans with no screening exceeds the banker’s private
benefit: G < p(R−R′).

Assumption 2 states that screening is socially efficient. Finally, we assume that the
NPV of the investment in the loan portfolio is positive even if the banker shirks:

Assumption 3. The expected cash flow of the loan portfolio with no screening is greater
than the investment cost, (1− p)R + pR′ > 1, from which p(R−R′) < R− 1.

This assumption ensures that the banker can finance the project even when outside
investors anticipate no screening effort. The exclusion of this assumption would lead to
the counterfactual result that the bank would be able to raise money from investors only
if the loan portfolio was risk-free. This would contradict the empirical evidence on the
risk level of banks’ assets.

While all parameters of the model are common knowledge to the investors, we have
the following assumption:

8As it will be clear later, in equilibrium deposit insurance will never be used as depositors will always
be fully repaid by the bank.
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Assumption 4. The return of the long-term investment can only be privately observed
by the banker at t = 1.

At t = 1, the banker has the option to invest in a follow-on short-term risky project,
which requires no outlay and has cash flow at t = 2 of either R − R′ with probability
(1− q) or −R′ with probability q, where q ∈]0, 1[.

Assumption 5. The NPV of the follow-on project is negative: (1− q)R−R′ < 0.

One the one hand, the upside of this project restores the cash flow to R. On the
other, the losses from the project can make the bank default, which occurs when the
output is zero. In effect, taking this project is tantamount to shifting risk.9

Assumption 6. The bank can be financed even if the banker shirks and takes the follow-
on project: (1− pq)R− 1 + pqD > 0.

Although the follow-on project destroys values, the total cash flow to the bank is still
positive. This assumption ensures the lending project will always be financed, where
the expected value of the wealth transferred from FDIC upon the default of the deposit
pqD is captured by the bank.

Assumption 7. The regulator imposes taxes (or other penalties) on 2R−R′ and R−R′

at t = 2, to restore a return R.

Taking the risky project when the return at t = 1 is R gives an outcome at t = 2 of
either 2R − R′ or R − R′. As the return in t = 2 is public information, either of these
two outcomes would reveal the banker’s ex-post moral hazard action. Assumption 7
states that the regulator deters such a behavior by imposing taxes (or other penalties)
that undo the effect of ex-post moral hazard. Therefore, the risk-shifting incentive is
eliminated and the follow-on project will not be taken if the return at t = 1 is R. 10

The timeline is in Figure 1. The model contains two moral hazard issues by assuming
that both shirking and risk shifting are value destroying. The former issue has a long-
term impact on the value of the bank. In comparison, the latter moral hazard issue is
short-term, as it occurs only one period before the terminal date.

9For example, the banker may take position in derivatives for speculative purposes, or can extend
more credit to a borrower whose credit quality has already deteriorated, betting on their resurrection.

10Notably, while also the return R at t = 2 can be the result of moral hazard actions, it is not possible
for the regulator to implement the same deterrent as for the states 2R − R′ and R − R′, because the
return R occurs also when the banker screens loans. In fact, any punishment after the return R in t = 2
would encourage the banker to shirk.
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• The banker issues
securities to raise capital
and invest in the loan
portfolio.

• She decides to either
screen the loans or shirk
(and receives the private
benefit).

• The banker privately
observes the terminal
payoff.

• She chooses whether to
take the risky project.

• The final payoff is
realized.

• (In case, CoCo are
converted.)

• Investors are paid as per
their contract.

t = 0 t = 1 t = 2

Figure 1: Timeline of the model

While not strictly required for our results, we add the following assumption to ensure
that, if the banker’s endowment is sufficiently high (that is, the bank is well capitalized),
it is possible to achieve the first best outcome by issuing securities.

Assumption 8. We assume that E + (R− 1) > G
pq
.

For the banker’s investment problem, we analyze three alternative financing scenar-
ios: CoCo bonds (C), plain debt (B), non-voting shares (S). As it will be clear later on,
each security has (a vector of) design parameters, θ, with respect to which the banker
optimizes her value. The investment decision given the choice of the security delivers the
banker an expected net payoff Πj(θ). Given the endowment, E, and the fair price of the
security, denoted by P j, the required bank capital is Kj = 1−D− P j, and the resource
constraint is E ≥ 1−D − P j, for j = C,B, S. The banker’s program for security j is

max
θ

{
Πj(θ)−Kj(θ) + E, subject to E ≥ Kj(θ)

}
, (1)

where additional constraints may be imposed to ensure the feasibility of the security.

Intuitively, if E is sufficiently high, the banker can invest in the project by issuing
risk-free securities (and if E is very high, there is no need to issue any securities).
To avoid this trivial scenario, we assume that E is sufficiently low, and with no loss
of generality in what remains of the paper we analyze the case E = 0. Under this
condition, Assumption 8 becomes pq(R− 1) > G, which has an intuitive interpretation,
as it shows that, for first best to be attainable by issuing securities, the NPV of the
investment destroyed by shirking and taking risk, on the left-hand side, must be higher
than the private benefit.

In what follows, we analyze the solution of the banker’s program with CoCo bonds,
and then compare it to the solution with subordinated debt and non-voting shares.
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3 CoCo bond

A CoCo bond is characterized by three parameters: the face value, F , the conversion
ratio, γ ≥ 0, and the conversion trigger X. At t = 2, if the return is below a prede-
termined threshold, X, the CoCo converts to γF equity. That is, upon conversion the
CoCo investors get a fraction

λ =
γF

E + γF
(2)

of equity, with λ ∈ [0, 1[, and the shareholders receive a fraction 1−λ of total outstanding
shares. For convenience, in what follows we will characterize the conversion ratio with
λ through equation (2), the economic intuition being the same, as λ is monotonically
increasing in γ. Hence, in what follows θ = (F, λ,X). The CoCo bonds are going-
concern securities, meaning that the conversion threshold is higher than the default
threshold, D. Given the restriction on the final outcome set by Assumption 7, whereby
the maximum outcome is R, then the conversion threshold X is in our model naturally
set in the interval ]R′, R[.11 Figure 2 shows the ordering of the final terminal payoffs
and the CoCo conversion interval.

0 D R′ X R

CoCo conversion

default repayment

Figure 2: Conversion and repayment of CoCo bond.

Accounting for the moral hazard actions and limited liability, the payoffs to all the
parties in different cash flow scenarios are shown in Table 1, with the exclusion of the
banker’s private benefits.

Table 1: Payoffs to all investors (excluding the private benefit).

Cash flow Banker CoCo investors Depositors FDIC

R R−D − F F D 0
R′ (1− λ)(R′ −D) λ(R′ −D) D 0
0 0 0 D −D

11This implies that R′ is the highest cash flow at which conversion is triggered. Of course, the CoCo
is converted also if the return is lower than D, but in that case the CoCo investors get nothing, like the
other shareholders.
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While the CoCo bond investors can observe the terminal-date payoff of the bank,
they cannot observe the banker’s decisions at t = 1. As the CoCo bond market is
competitive, investors pay at t = 0 the break-even price, P (F, λ,X), for the bond
issuance. The banker invests in the loan portfolio if the financing constraint, E ≥
1−D−P (F, λ,X), is satisfied. Given the contract design (X,F, λ), because X is fixed,
the CoCo bond contract is fully characterized by the couple (F, λ), which is chosen in
the set C = [0, R−D]× [0, 1[, where the upper bound R−D for F is a consequence of
limited liability of equity investment. Conditional on these parameters for the offered
CoCo bond, the banker will adopt the strategy that maximizes her value (as opposed to
the total value of the bank). Hence, given (F, λ), the expectation of the return for the
CoCo bond investors depends on the banker’s strategy, and the break-even price of the
CoCo bond, P (F, λ), reflects such an expectation.

After the screening decision at t = 0, the banker makes the risk shifting decision based
on her private information on the cash flow at t = 1 and the objective to maximize the
expected return. If at t = 1 she observes R, the banker will not take the risky project
because, based on Assumption 7. But if she observes R′, risk shifting is a positive NPV
decision from her perspective, (R − D − F )(1 − q) > 0, because of limited liability.
Alternatively, if she does not shift risk, she anticipates that conversion will happen if no
action is taken, with equity value (1−λ)(R′−D). Figure 3 summarizes the equilibrium
decisions made by the banker and the ensuing cash flow to equity (with the exclusion of
the banker’s private benefit).

From the above analysis, there are three strategies that the banker can follow de-
pending on the offered CoCo bond contract (F, λ). The first is to screen at t = 0, and
therefore not to shift risk at t = 1. The value to the banker in this case is

ΠC
0 (F, λ) = R−D − F.

The second is to shirk at t = 0 but not to take any chances at t = 1, even if the outcome
is R′. The value to the banker from this strategy, including the private benefit from
shirking, is

ΠC
1 (F, λ) = p(R′ −D)(1− λ) + (1− p)(R−D − F ) +G.

In the third strategy, the banker first shirks and then shifts risk if the outcome is R′,
with an overall value to the banker of

ΠC
2 (F, λ) = (1− pq)(R−D − F ) +G.

Hence, although the CoCo bond contract is one, depending on (F, λ) it allows for
three different outcomes. For such a contract, we will call Design 0 the subset of C with
no moral hazard action, Design 1 the subset for which the banker shirks but does not
shift risk, and Design 2 the design with both shirking and risk-shifting conditional on a
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screen

R−D − F

N

shirk

R−D − F

N

1− p

(1− λ)(R′ −D)

N

R−D − F

1− q

0

q

S

p

Figure 3: Cash flow to equity at t = 2 (with the exclusion of private benefit). First,
the banker decides either to screen the loan portfolio, making the return safe at R, or
to shirk, making the return risky. In the latter case, with probability p the return is R′

and R otherwise. Next, the banker either leaves the initial investment unchanged (N),
or shifts risk (S), in which case the incremental cash flow is −R′ with probability q or
R−R′ otherwise.

low return. Design 0 is an uncompromising one, in the sense that no moral hazard by the
banker is allowed. Design 1 allows shirking but not risk-shifting, and the private benefit
extracted by the banker can be viewed as the necessary evil that financiers accept to
finance the profitable project. Finally, Design 2 leaves the banker unrestricted.12

Before we analyze these designs, we show that the attainment of each design depends
on the quantities

F0 = R−D − G

pq
, F1 = R−D − R′ −D

1− q
, F2 = R−R′ − G

p
,

which in turn depends on the model parameters. It is easy to show that F0, F1, F2 ≤
R − D under the assumptions made in the previous section. The relative position of
these three quantities determines different scenarios regarding the feasibility of the CoCo
bond contract. We have the following result.

Lemma 1. Given Assumptions 1-7, only two scenarios are possible:

1. F1 < F2 < F0, if G
pq

< R′−D
1−q

and G
pq

< R − D, where F1 > 0 if and only if
R′−D
1−q

< R−D;

12The total firm value (or welfare) in correspondence of the three strategies is respectively W0 = R,
W1 = (1− p)R+ pR′ +G, W2 = (1− pq)R+G. Given Assumptions 2 and 5, only the first strategy is
socially efficient, and W0 > W1 > W2.
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Panel A: R′−D
1−q

< R−D (that is F1 > 0)

G
pq

0 R′−D
1−q

R−D
(A.1) (A.2) (A.3)

F1 < F2 < F0 F0 < F2 < F1 F0 < F2 < F1

Panel G: R′−D
1−q

≥ R−D (that is F1 ≤ 0)

G
pq

0 R−D R′−D
1−q

(B.1) (B.2) (B.3)

F1 < F2 < F0 F1 < F2 < F0 F0 < F2 < F1

Figure 4: Cases for the design of the CoCo bond contract.

2. F0 < F2 < F1, if
R′−D
1−q

< R−D and R′−D
1−q

< G
pq
.

Proof. Simple algebra shows that there are two key cases to consider. The first is that
F2 ≥ F1 if and only if G

pq
≤ R′−D

1−q
, and this condition is also equivalent to F0 ≥ F2.

The second case is that F0 ≥ 0 if and only if G
pq

≤ R −D. The relative position of the

quantities R′−D
1−q

and R − D generates the six different cases in Figure 4 (e.g., (B.2) is

for G
pq

∈ [R−D, R
′−D
1−q

[, for which we have F1 < F2 < F0). Because F1 > 0 if and only if
R′−D
1−q

< R−D, in Figure 4 Panel (a) F1 > 0 and in Panel (b) F1 ≤ 0. Also, if G
pq

= R′−D
1−q

,
then F0 = F1 = F2. If F0, F1, F2 ≤ 0, the lower bounds set by these quantities are
redundant because F is non-negative by definition. Assumption 2 implies that F2 > 0,
which rules out both (B.2), because in it F0 < 0, and (B.3) because in it F1 < 0. After
excluding these two cases, we are left with two possible scenarios. The first is G

pq
< R′−D

1−q

and G
pq

< R−D, which corresponds to both (A.1) and (B.1). The second is R′−D
1−q

< G
pq
,

although R′−D
1−q

< R−D, which corresponds to (A.2) and (A.3).

The three designs of the CoCo bond depend also on the functions

λ0(F ) =
pF + p(R′ −R) +G

p(R′ −D)
, λ1(F ) =

(1− q)F − (R−R′) + q(R−D)

R′ −D
,

which will be used to set constraints on λ. Both functions are linear and increasing in
F . Simple algebra shows that

λ0(F2) = 0, λ0(F0) = 1− G

pq

1− q

R′ −D
, λ0(R−D) = 1 +

G

p(R′ −D)
,

13



and
λ1(F1) = 0, λ1(F ) ≤ 1 for all F ∈ [0, R−D].

If λ0(F ) and λ1(F ) set lower bounds on λ, these are redundant when they are negative.

3.1 Design 0: no moral hazard

To prevent the banker from taking any moral hazard actions, her value from screen-
ing should be greater than that of any strategies entailing shirking. As shown before,
there are two such strategies, and therefore we require that two incentive compatibility
conditions are satisfied: ΠC

0 ≥ ΠC
1 and ΠC

0 ≥ ΠC
2 .

The first condition, is equivalent to λ ≥ λ0(F ), and sets a lower bound on eq-
uity claimed by CoCo investors upon conversion, making shirking less attractive to the
banker. Because λ ∈ [0, 1[, the lower bound set for λ is binding if λ0(F ) < 1 (otherwise
the contract is not feasible), that is under Assumption 1 if

F < R−D − G

p
. (3)

The second condition, sets an upper bound on the face value of the CoCo bond,
F ≤ F0. Hence, Design 0 is infeasible if F0 < 0, that is if G

pq
≥ R−D.

Under the assumptions set for the parameters of the model, both conditions (3) and
F ≤ F0 set upper bounds on F , and if q < 1 the latter is more restrictive than the
former. Hence, for q < 1, if F ≤ F0, then λ0(F ) is lower than one and the contract
design eliminates the banker’s incentive to take either of the moral hazard actions.

Because λ0(F ) is an increasing function (with slope 1
R′−D

) and λ0(F2) = 0 and

λ0(F0) = 1 − G
pq

1−q
R′−D

, Design 0 is feasible at F0 if and only if G
pq

< R′−D
1−q

. In the

alternative case of G
pq

≥ R′−D
1−q

, then λ0(F0) < 0 and F0 < F2. In this case, the contract is

feasible with unrestricted λ for all F < F0, if F0 > 0, which is equivalent to G
pq

< R−D.

If Design 0 is feasible, the CoCo bond is risk-free, and its price equates the face value.
We have just proved the following lemma.

Lemma 2. With reference to Lemma 1: in Scenario 1, Design 0 is attained if F ≤ F0

and λ ≥ max{λ0(F ), 0}; in Scenario 2 with the additional restriction G
pq

< R − D,

Design 0 is attained if F ≤ F0 and λ ∈ [0, 1[. In these scenarios, the price of the CoCo
bond is PC

0 (F, λ) = F .

Lemma 2 indicates that offering the CoCo investors a large share of equity upon
conversion creates an incentive for the banker to screen the loan portfolio. At the same

14



0 F

λ

F2 F0

λ0(F )

1− G
pq

1−q
R−D

1

(a) G
pq < R′−D

1−q and G
pq < R−D

0 F

λ

F0 F2

1

(b) R′−D
1−q ≤ G

pq < R−D

Figure 5: Feasibility of Design 0 of CoCo bond.

time, a low face value, F , makes risk-free (or low risk, in general) investment attractive
enough for the banker.

Figure 5 describes the subset of C for which Design 0 can be obtained in the scenarios
where this design is feasible. In Panel (a), because G

pq
< R′−D

1−q
, then 1 − G

pq
1−q
R−D

∈]0, 1[.
Based on Lemma 1, in the alternative case R′−D

1−q
≤ G

pq
, we have F0 < F2 and λ0(F0) < 0

and the design is feasible only if G
pq

< R−D, for which F0 > 0.

3.2 Design 1: the “necessary evil”

We consider a CoCo design that allows the banker to capture the private benefits by
shirking but not to shift risk at t = 1 if she learns that the terminal payoff is R′.

The banker would not take more risk if ΠC
1 ≥ ΠC

2 , that is λ ≤ λ1(F ), which sets
an upper bound on λ. The set for λ defined by the latter condition is non-empty, and
therefore the contract is feasible, if λ1(F ) ≥ 0, that is F ≥ F1. The economic intuition
of the lower bound for F set by F1 is that for given R and D, if R′ −D or q are small,
CoCo bond holders require F to be large enough to make risk shifting less attractive to
the banker. At the same time, λ1(F ) becomes larger for a higher F .

The banker does not screen the loan portfolio if ΠC
1 > ΠC

0 , which is equivalent to
λ < λ0(F ). This design is feasible only if the set of λ defined by λ < λ0(F ) is non-empty,
which occurs if λ0(F ) > 0, that is F > F2.

Altogether, this design allows shirking and avoids risk shifting if λ ≤ λ0(F ) and
λ ≤ λ1(F ), which set an upper bound on λ, and if F ≥ F1 and F > F2, which set a
lower bound for F . For short, F ≥ max{F1, F2} and λ ≤ min{λ0(F ), λ1(F )}.
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p(R′−D)

1− G
pq

1−q
R−D

(a) G
pq < R′−D

1−q and G
pq < R−D

0 F

λ

F2 F1 R−D

1

1 + G
p(R′−D)

λ0(F )

λ1(F )

(b) R′−D
1−q ≤ G

pq

Figure 6: Feasibility of Design 1 of CoCo bond.

To specify the feasible region of this design, we consider two possible scenarios for
the model parameters. The first is G

pq
< R′−D

1−q
, then λ0(F ) ≥ λ1(F ) if and only if F ≥ F0.

Figure 6, Panel (a) shows this case, in which Design 1 is attained for F ∈ [F2, F0] and
λ ≤ λ0(F ) and for F ∈]F0, R − d] and λ ≤ λ1(F ). The second scenario is G

pq
≥ R′−D

1−q
,

for which λ0(F ) > λ1(F ) for all F ≥ 0. In this case, shown in Panel (b) of Figure 6,
Design 1 is feasible for F1 < F ≤ R − D and λ ≤ λ1(F ). Figure 6 presents the case
G
pq

< R − D, which is equivalent to F0 > 0. However, the result does not change if
F0 < 0.

We have proved the following lemma.

Lemma 3. With reference to Lemma 1: in Scenario 1, Design 1 is attained if F ≥ F2

and λ ≤ min{λ0(F ), λ1(F )}; in Scenario 2, Design 1 is attained if F ≥ F1 and λ <
λ1(F ). Far all these cases, PC

1 (F, λ) = (1− p)F + p(R′ −D)λ.

Design 1 is the necessary compromise when the funding condition must be met but
shirking is inevitable because of the large private benefit. Intuitively, this design triggers
shirking because the face value has to be set high enough to fund investment, but hinders
risk shifting by offering the CoCo holders a smaller cut of payoff upon conversion. With
probability p, the banker observes R′ at t = 1 and knows conversion will be triggered if no
further decision is made. At this point, the banker can only choose between the dilution
of share value due to CoCo bond conversion and shifting risk. The latter becomes more
attractive if λ is low, and the banker receives a larger share of the return upon conversion.
Contrary to Design 0, which is achieved for a high λ, with Design 1 the banker keeps a
larger proportion (i.e., a larger 1 − λ) and gives up risk-shifting. Such a design avoids
the second value-destroying action and attracts the outside investors. Differently from
Design 0, under Design 1 the CoCo bond is risky.
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pq < R−D

Figure 7: Feasibility of Design 2 of CoCo bond.

Note that Lemma 3 allows λ = 0. Hence, PWD CoCos, for which γ is zero and share-
holders are not diluted upon conversion (that is, λ = 0), are special cases of Design 1.
Our model allows to interpret the zero-γ feature as a way to discourage the banker from
taking excessive risks when the ex-post risk-shifting incentive is strong. In other words,
PWD CoCos might be used to eliminate the ex-post moral hazard actions.

3.3 Design 2: unrestricted actions

This design gives the banker the incentive to both shirk and shift risk if conditions
ΠC

2 ≥ ΠC
0 and ΠC

2 ≥ ΠC
1 are simultaneously met. The first condition is equivalent to

F ≥ F0. This condition is always attainable because F0 < 1, under the assumptions of
the model. The second condition is equivalent to λ ≥ λ1(F ). Also this condition is always
attainable, because λ1(F ) ≤ 1 for the relevant values of the contractual parameters
(F, λ). At the same time, if λ1(F ) < 0, which occurs for F < F1, λ is unrestricted in
[0, 1[.

There are two possible scenarios for this case. In the first, G
pq

< R′−D
1−q

and F0 > F1,

as shown in Panel (a) of Figure 7. In the second G
pq

≥ R′−D
1−q

and F0 ≤ F1, as represented

in Panel (b) of Figure 7. From Lemma 1, F0 ≥ 0 if G
pq

≤ R−D. Figure 7 represents this

case. However, the results do not change if F0 ≥ 0, as in this case any F ∈ [0, R−D] is
consistent with this design.

Because this designs allows for shirking and risk-shifting, the CoCo bond has a risky
return and its price is (1− pq)F . We have proved the following lemma.

Lemma 4. With reference to Lemma 1: in Scenario 1, Design 2 is attained if F ≥ F0

and λ ≥ λ1(F ); in Scenario 2, Design 2 is attained if F ≥ F0 and λ ≥ max{λ1(F ), 0}.
In all these cases, the price of the CoCo bond is PC

2 (F, λ) = (1− pq)F .
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F
0 F2 F0 R−D

Design 0 Design 0 if λ ≥ λ0

Design 1 if λ < λ0

Design 1 if λ ≤ λ1

Design 2 if λ > λ1

Figure 8: Feasible designs of the CoCo bond contract (under Scenario 1).

3.4 Optimal design of CoCo bond

We will focus on Scenario 1 of Lemma 1, in which F1 < F2 < F0, because this is
the relevant scenario for Design 1 to emerge as optimal, and because, in the alternative
Scenario 1, it may be F0 < 0, which would make it impossible to get a first best outcome.
Figure 8 summarizes the feasible designs of the CoCo bond vis-a-vis the face value, F ,
which will be relevant later on.

The banker’s program in (1) with CoCo becomes

max
(i,F,λ)

{
ΠC

i (F, λ)−KC
i (F, λ), subject to KC

i (F, λ) ≤ 0
}
,

where the optimization is done across different designs, i, and design parameters, (F, λ),
with additional constraints deriving from the feasibility of each design i, as illustrated
previously (e.g., Design 1 is possible if F ∈ [F2, R−D]).

In what follows, we analyze the optimal design of CoCo bonds in relation to the
financing conditions of the banker. Intuitively, the bankers potentially faces a trade-off
on the choice of the design of the CoCo bond: on the one hand a design that allows
for more moral hazards delivers an higher ex post value to the banker, which should be
reflected in a higher expected payoff ΠC

i ; on the other, such a design reduces the ex post
payoff of the external financiers, and therefore has a lower price, which increases the
required capital contribution by the banker, KC

i . We set to analyze this tradeoff here
below.

To solve the banker’s program, we will first determine the value of the objective
function after it has been optimized with respect to (F, λ) in each design. We denote by
EC
i the optimal value to the banker from Design i. Next, we will compare such values

across the three designs, conditional on their feasibility, and determine the optimal
design contingent on the financing conditions of the banker. We focus on the case
F1 < 0, which is equivalent to (1− q)R−R′ + qD < 0. This condition is satisfied when
the NPV of the risk-shifting action is negative and large, in particular larger than qD.
The latter occurs, for a given negative NPV of the risk-shifting action, when the bank
has issued little deposits. The case F1 ≥ 0 is not key for our analysis and is relegated
to Appendix A.
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The following lemma determines the optimal value in each design.

Lemma 5. In Scenario 1 of Lemma 1, the optimal value to the banker in each design is

EC
0 = R− 1 for F > 1−D and F ∈ [0, F0],

EC
1 = pR′ + (1− p)R− 1 +G for F >

1−D − p(R′ −D)λ

1− p
and F ∈ [F2, R−D],

EC
2 = (1− pq)R− 1 + pqD +G for F >

1−D

1− pq
and F ∈]F0, R−D].

Proof. For Design 0, if KC
0 ≤ 0, which is equivalent to F ≥ 1−D, we have

ΠC
0 −KC

0 = R−D − F − (1−D − F ) = R− 1.

Hence, with this design, the banker has a value of zero if F is low, and R − 1 > 0 if F
is high. A necessary condition for the maximum value to be achievable is 1 −D < F0,
that is G

pq
< R− 1, which is equivalent to Assumption 8.

For Design 1, if KC
1 ≤ 0, that is F ≥ 1−D−p(R′−D)λ

1−p
, we have

ΠC
1 −KC

1 = p(R′−D)(1−λ)+(1−p)(R−D−F )+G− [1−D−(1−p)F −p(R′−D)λ]

= pR′ + (1− p)R− 1 +G.

If alternatively F < 1−D−p(R′−D)λ
1−p

, then the banker’s value is zero. This design is feasible
if F < R−D.

Finally, for Design 2, if KC
2 ≤ 0, which is equivalent to F ≥ 1−D

1−pq
, we have

ΠC
2 −KC

2 = (1− pq)(R−D − F ) +G− [1−D − (1− pq)F ]

= (1− pq)R− 1 + pqD +G.

In the opposite case in which F < 1−D
1−pq

, the banker’s value is zero. This design is feasible

if F < R −D. Hence, the maximum can be achieved if 1−D
1−pq

< R −D, which is always
satisfies from Assumption 6.

In Lemma 5, the optimal value in Design 1, differently from Design 0 and 2, depends
on a parameter, λ, with respect to which the value EC

1 must be optimized. This is done
later on.

The next lemma shows that, when Design 0 and 1 are both possible, the former
delivers a higher value for the banker, and when Design 1 and 2 are both possible, the
latter has a lower value for the banker.
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Lemma 6. Under Scenario 1 of Lemma 1, and for F1 < 0, we have EC
0 > EC

1 for F ∈
[F2, F0] and EC

1 > EC
2 for F ∈]F0, R−D].

Proof. EC
0 > EC

1 is equivalent to R−1 > pR′+(1−p)R−1+G, that is p(R−R′) > G,
which is Assumption 2. EC

1 > EC
2 is equivalent to pR′ + (1− p)R− 1+G > (1− pq)R−

1 + pqD +G that is, R−D < R′−D
1−q

, which is equivalent to F1 < 0.

For F ∈ [0, F2[, only a risk-free design is feasible and for F > F2 more than one
design is feasible. In the following lemma, we show that when two designs are possible
for the same value of F < F0, then banker’s value without moral hazard is higher than
the value with only shirking. Secondly, if F > F0, the banker’s value with only shirking
is higher than the one with both shirking and risk-shifting, if excessive risk has a large
welfare cost.

Lemma 7. Under Scenario 1 of Lemma 1, if F1 < 0,

• for F ∈ [F2, F0], such that the budget condition F > 1−D is satisfied, Design 0 is
optimal;

• for F ∈]F0, R − D] such that the budget condition F > 1−D−p[(R−R′)−q(R−D)]
1−pq

is
satisfied, Design 1 is optimal.

Proof. In the interval [F2, F0], both Design 0 and 1 are possible, and from Figure 8 the
first is feasible if λ ≥ λ0(F ) and the second is feasible if λ < λ0(F ). From Lemma 5,
Design 1 delivers the value EC

1 for the banker in the interval [F2, F0] if

1−D − p(R′ −D)λ

1− p
< F0 ⇔ λ >

1− (1− p)R− pD + (1− p) G
pq

p(R′ −D)
,

which sets a lower bound on λ. If for F ∈ [F2, F0]

1− (1− p)R− pD + (1− p) G
pq

p(R′ −D)
> λ0(F ),

Design 0 trivially dominates Design 1 because the latter has no value for the banker. In
the opposite case, Design 1 has positive value if F > 1−D−p(R′−D)λ

1−p
. To optimize Design 1

with respect to λ, the threshold 1−D−p(R′−D)λ
1−p

should be minimized, which occurs if λ
is set equal to the upper bound of the interval in which Design 1 is feasible, that is
λ = λ0(F ). Hence, Design 1 delivers the maximum value, EC

1 , for

F >
1−D − p(R′ −D)λ0(F )

1− p
⇔ F > 1−D + p(R−R′)−G.

However, as shown in Lemma 6, the value of Design 1 is lower than the one of Design 0,
and a higher F is required to achieve EC

1 from Design 1, as 1−D+p(R−R′)−G > 1−D,
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which is equivalent to Assumption 2. From this we can conclude that for all F ∈ [F2, F0],
Design 0 dominates Design 1.

In the interval ]F0, R−D] both Design 1 and 2 are possible, and the first is feasible
for λ < λ1(F ) and the second for λ ≥ λ1(F ). From Lemma 5, Design 1 delivers EC

1 if

1−D − p(R′ −D)λ

1− p
< R−D ⇔ λ >

1− (1− p)R− pD

p(R′ −D)
,

which sets a lower bound on λ. If this lower bound is, for F ∈]F0, R −D], higher than
λ1(F ), Design 1 has no value to the banker. Then, the condition on F for Design 1 to
have value EC

1 is

1− (1− p)R− pD

p(R′ −D)
< λ1(F ) ⇔ F >

1− (1− p)R− pD + p[(R−R′)− q(R−D)]

p(1− q)
.

There is at least an F for which the above inequality holds true if

1− (1− p)R− pD + p[(R−R′)− q(R−D)]

p(1− q)
< R−D ⇔ (1− p)R + pR′ > 1.

Therefore, because of Assumption 3, Design 1 has value EC
1 if it can be implemented. To

maximize the chance of investing in it, the threshold for F should be minimized, which
occurs if the banker chooses λ = λ1(F ). Therefore, the maximum value of this design is
delivered for

F >
1−D − p(R′ −D)λ1(F )

1− p
⇔ F >

1−D + p[(R−R′)− q(R−D)]

1− pq
.

From Lemma 6, for F1 < 0 the optimal value of Design 2 is lower than the one of
Design 1, and there is a higher threshold on F to achieve EC

2 from Design 2, as

1−D + p[(R−R′)− q(R−D)]

1− pq
<

1−D

1− pq
,

because R−R′ < q(R−D) is equivalent to F1 < 0. From this, we can conclude that, in
the interval ]F0, R −D], Design 1 delivers a higher value for lower F , which dominates
Design 2.

To summarize, under the assumptions that lead to Scenario 1, for each F there is
only one optimal design of the CoCo bond. Focussing on this case, Design 0 is optimal
for F ∈ [0, F0]. Lemma 7 shows that the design with “necessary evil” emerges as optimal
for F ∈]F0, R−D] under the assumption F1 < 0.

Lemma 7 shows the optimality of CoCo bond in relation to the face value parameter,
F , and implicitly to λ. However, to discuss the optimality with respect to the banker’s
financing conditions, and vis-à-vis the other types of securities, we need to restate the
result in terms of the amount, PC , raised by issuing the CoCo bond.
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Proposition 1. Under Scenario 1 of Lemma 1, if F1 < 0 and G
pq

> p(R − R′), the
banker’s value as a function of the amount raised by issuing CoCo bonds is

EC(P ) =

{
R− 1 if P ∈ [1−D,R−D − G

pq
]

pR′ + (1− p)R− 1 +G if P ∈]R−D − G
pq
, R−D − p(R−R′)]

Proof. The break-even price of the CoCo bond is

PC(F ) =

{
F, if F ∈ [1−D,F0],

p(R′ −D)λ+ (1− p)F, if F ∈] max{1−D−p[(R−R′)−q(R−D)]
1−pq

, F0}, R−D].

For F ≤ F0, P
C(F ) = F because Design 0 can be used, and hence the amount raised

exactly reflects the boundaries for F . For F > F0, the banker chooses λ = λ1(F ) as we
proved in Lemma 7. Hence, PC(F ) = (1− pq)F − p(R− R′) + pq(R−D), which gives
EC
1 .

13

There are two possible cases:

a) if 1−D−p[(R−R′)−q(R−D)]
1−pq

> F0, Design 1 is optimal for F ∈]1−D−p[(R−R′)−q(R−D)]
1−pq

, R−
D]. Given the restriction on F for this scenario, PC ∈ [1−D,R−D− p(R−R′)].

b) if 1−D−p[(R−R′)−q(R−D)]
1−pq

≤ F0, then Design 1 is optimal for F ∈]F0, R −D]. There-

fore, PC ∈ [R−D − G
pq

− p(R− R′) +G,R−D − p(R− R′)]. Notably, R−D −
G
pq

− p(R−R′) +G < R−D − G
pq

by Assumption 2.

For P ∈ [1−D,R−D− G
pq
] under (a), or for P ∈ [R−D− G

pq
−p(R−R′)+G,R−D− G

pq
]

under (b), both designs can be financed, but the banker prefers the one with the higher
value, EC

0 .

Finally, in order to avoid the trivial case with only the first-best choice, we check if
the maximum amount that can be raised with Design 0, R −D − G

pq
, is lower than the

maximum amount that can be raised with Design 1, R − D − p(R − R′). This is the
case if R−D − G

pq
< R−D − p(R−R′), that is G

pq
> p(R−R′).

In Proposition 1, we focus on the case G
pq

> p(R − R′), under which Design 1 is not
dominated. We will make the same assumption for the remaining part of the analysis.
The opposite case, G

pq
≤ p(R−R′), is relegated to Appendix B.

13Design 2 is dominated by Design 1, and we can therefore exclude it from our analysis. Indeed, for
F1 < 0, the price of Design 2, (1− pq)F , is always lower than the price of Design 1, (1− pq)F − p(R−
R′) + pq(R −D), for all F in which both designs are feasible. Therefore, Design 1 raises more capital
and delivers a higher value for the banker than Design 2.
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Figure 9: Optimal values to the banker against the amount raised by issuing CoCo bonds
(with G

pq
> p(R−R′)).

Figure 9 plots the banker’s optimal value vis-à-vis the capital raised from outside
investors. For PC < 1 − D, the bank cannot raise enough to fund the project, so her
value is zero. If the banker’s financing conditions require PC ∈ [1 − D,R − D − G

pq
],

Design 0 can be afforded, whereby both moral hazard actions are avoided, and the first
best value R − 1 is achieved. If the banker’s conditions require an amount higher than
R −D − G

pq
to invest in the project, then Design 1 must be used. Hence, a design with

“necessary evil” is chosen by a relatively undercapitalized bank.

Notably, under the assumptions that make Design 1 dominant for relatively high
face value, F , the optimal λ is chosen equal to λ1(F ). Hence, given F , the optimal
conversion ratio is inversely proportional to R′ −D and to the NPV of the risk-shifting
project, (R − R′) − q(R − D) < 0, which is equivalent to F1 < 0. In other words, the
smaller is the welfare cost of the risk-shifting action and/or the higher R′ relative to D,
the smaller λ and the conversion ratio, γ, of the CoCo design with necessary evil.

4 Comparison of CoCo bonds with other securities

In this section, we compare CoCo bonds to two alternative securities, subordinate debt
and non-voting shares, to analyze the relative efficiency of CoCo bonds. For each al-
ternative security, we first investigate the banker’s incentives and profitability, and next
we compare such profitability to the one achieved using CoCo bonds under the same
financing conditions. Also in this case we will focus on Scenario 1 of Lemma 1, and the
case F1 < 0. The case F1 ≥ 0 is in Appendix A.
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4.1 Subordinated debt

The design parameter with subordinated debt is the principal amount, B. As we did
for CoCo bonds, also in this case three designs are in principle possible depending on
the number of moral hazard actions they allow. The associated expected payoffs to the
banker are respectively

ΠB
0 = R−D −B,

ΠB
1 = pmax{R′ −D −B, 0}+ (1− p)(R−D −B) +G,

and
ΠB

2 = (1− pq)(R−D −B) +G.

We have the following preliminary results regarding the feasibility of subordinated
debt contracts.

Lemma 8. Under Scenario 1 of Lemma 1, Design 0 is attained if B ≤ F0, and PB
0 = B.

Proof. The banker screens the loan portfolio only if both incentive compatibility con-
ditions, ΠB

0 > ΠB
1 and ΠB

0 > ΠB
2 , are met. As for the first condition, we consider two

scenarios: The first isB > R′−D, for which ΠB
0 > ΠB

1 is equivalent toB < R−D−G
p
. For

condition B > R′−D to be consistent with B < R−D−G
p
it must be R′−D < R−D−G

p
,

which is equivalent to p(R − R′) > G, that is Assumption 2. The second scenario is
B ≤ R′ − D, for which ΠB

0 > ΠB
1 is equivalent to p(R − R′) > G, which is always

true under Assumption 2. Combining the two scenarios we conclude that ΠB
0 > ΠB

1 if
B < R −D − G

p
. The second condition puts the same restriction on the debt principal

as ΠC
0 > ΠC

2 in the CoCo bond, that is B ∈ [0, F0]. The reason for having the same
condition for both securities is that a CoCo bond would not be converted and remains
equal to a corporate bond for both Design 0 and Design 2. This bond-like feature also
leads to the same budget constraint and value to the banker for both bonds and CoCo
bonds. Because R−D − G

p
> F0, the upper bond on B is F0.

Lemma 9. Under Scenario 1 of Lemma 1, Design 1 is never feasible.

Proof. Design 1 would be feasible if ΠB
1 > ΠB

0 and ΠB
1 > ΠB

2 . The first condition is
equivalent to B > R −D − G

p
. As for the second, ΠB

1 − ΠB
2 = pmax{R′ −D − B, 0} −

p(1−q)(R−D−B). If B > R′−D, it becomes ΠB
1 −ΠB

2 = −p(1−q)(R−D−B) < 0. So,
feasibility of Design 1 requires B ≤ R−D. Alternatively, if B ≤ R′ −D, the condition
becomes ΠB

1 − ΠB
2 = p(R′ −D −B)− p(1− q)(R−D −B), which is equivalent to

B <
R′ − (1− q)R

q
−D.
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Overall, ΠB
1 > ΠB

2 if B ≤ R′ −D and B < R′−(1−q)R
q

−D. Because

R′ − (1− q)R

q
−D < R′ −D ⇔ (1− q)(R′ −R)

q
< 0,

then ΠB
1 > ΠB

2 for B < R′−(1−q)R
q

−D. For Design 1 to be feasible, it should be

(1− q)(R′ −R)

q
+R′ > R−D − G

p
⇔ p(R′ −R) + qG

pq
> 0.

However, the opposite is true because p(R−R′) > G > qG for q ∈]0, 1[ and Assumption 2.
Therefore, Design 1 cannot be feasible.

Lemma 9 states that the banker would never issue subordinated debt under Design 1.
This is because the banker’s risk-shifting incentives are increased by a higher face value
B, due to her limited liability. On the other hand, at a low B for which default is not a
problem, the value destroyed by shirking would be greater than the private benefit, so
the banker screens the loan portfolio and avoids such a cost. Overall, the banker either
takes or avoids both moral hazard actions altogether, as shown by the following lemma.

Lemma 10. Under Scenario 1 of Lemma 1, Design 2 is attained for B ≥ F0 and
PB
2 = (1− pq)B.

Proof. For Design 2 to be feasible, conditions ΠB
2 > ΠB

0 and ΠB
2 > ΠB

1 must be true. As

seen in previous proofs, this is equivalent to B > F0 and B > R′−(1−q)R
q

−D, respectively.

Because F0 > R′−(1−q)R
q

− D from Assumption 2, we can conclude the lower bound on
B is F0.

From the above results, for subordinated debt only Design 0 and 2 are feasible.
Hence, the related banker’s program becomes

max
(i,B)

{
ΠB

i (B)−KD
i (B), subject to KD

i (B) ≤ 0
}
,

with the additional feasibility constraints for each design.

Lemma 11. Under Scenario 1 of Lemma 1, with debt financing, the optimal value to
the banker in each design is

ED
0 = R− 1 for B > 1−D and B ∈ [0, F0],

ED
2 = (1− pq)R− 1 + pqD +G for B >

1−D

1− pq
and B ∈ [F0, R−D].
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Proof. Similar to the proof of Lemma 5, Design 0 delivers ED
0 = R−1 if 1−D < F0, that

is equivalent to R−1 > G
pq
, which is Assumption 8. Design 2 has the same value as CoCo

bonds in the same design, ED
2 = (1−pq)R−1+pqD+G, and for this value to be achieved,

condition 1−D
1−pq

< R−D must hold true. That is equivalent to (1− pq)R− 1 + pqD > 0
from Assumption 6.

To determine the optimal design under subordinate debt, we observe that ED
0 > ED

2 is
equivalent to R−D > G

pq
, which is F0 > 0. Under Scenario 1 of Lemma 1, F0 > F2 > 0.

Hence, when both design are possible, Design 0 dominates 2. Given Design 0 is feasible
for B < F0 and Design 2 for B > F0, then we have proved the following lemma.

Lemma 12. Under Scenario 1 of Lemma 1,

• for B ∈ [0, F0] such that the budget condition B > 1 −D is satisfied, Design 0 is
optimal;

• for B ∈ [F0, R − D] such that the constraint B > 1−D
1−pq

is satisfied, Design 2 is
optimal.

Finally, the optimality of contract vis-à-vis the price of the security, and therefore
the raised amount, is stated in the following proposition. Because we will be comparing
subordinated debt to CoCo bond, we derive the result under the same assumptions of
F1 < 0 and G

pq
> p(R−R′).

Proposition 2. Under Scenario 1 of Lemma 1, for F1 < 0 and assuming G
pq

> p(R−R′),
the banker’s value as a function of the amount raised by issuing subordinated debt is

• if G
pq

> pq(R−D),

ED(P ) =

{
R− 1 if PB ∈ [1−D,R−D − G

pq
[

(1− pq)R− 1 + pqD +G if PB ∈ [R−D − G
pq
, (1− pq)(R−D)]

• if G
pq

≤ pq(R−D), ED(P ) = R− 1 if PB ∈ [1−D,R−D − G
pq
[.

Proof. The break-even price of debt is

PB =

{
B, if B ∈ [1−D,F0],

(1− pq)B, if B ∈]F0, R−D].

PB is monotonically increasing in B, so we need to calculate the amounts at the bound-
aries of each interval. For the interval where Design 0 is optimal, the raised amount is B,
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that is PB ∈ [1−D,F0]. For the interval where Design 2 is optimal, PB(F0) = (1−pq)F0

and PB(R−D) = (1− pq)(R−D).

The maximum amount raised using Design 2 is higher than that using Design 0 if
(1 − pq)(R − D) > (R − D − G

pq
), that is G

pq
> pq(R − D). Because we are assuming

G
pq

> p(R−R′) and F1 < 0 is equivalent to pq(R−D) > p(R−R′), we must consider two

possible scenarios: (1) G
pq

> pq(R−D) > p(R−R′); and (2) pq(R−D) ≥ G
pq

> p(R−R′).

In first scenario, in the interval [(1− pq)F0, F0], Designs 0 and 2 may raise the same
amount, but the banker chooses Design 0 because ED

0 > ED
2 . On the other hand, Design 2

is used to raise capital in ]F0, (1− pq)(R−D)] and the banker’s value is ED
2 .

In the second scenario, Design 2 is dominated and the banker chooses Design 0 in
the range [1 − D, (1 − pq)(R − D)], but it only delivers a positive value to the banker
for PB ∈](1 − pq)(R − D), F0[. Overall, in this scenario the banker can only fund the
project using Design 0 and for PB ∈ [1−D,F0[.

The comparison between CoCo bonds and subordinated debt is in Figure 10. The
figure shows that the safe designs with both subordinated debt (blue) and CoCo bonds
(black) is optimal if the principal is lower than R − D − G

pq
, which is affordable by a

well capitalized bank. In Panel A, if more capital must be raised by issuing the security,
that is P > R − D − G

pq
, subordinated debt fails to prevent any moral hazard actions

and delivers (1− pq)R− 1+ pqD+G, which is lower than the value attainable with the
CoCo bond. Indeed, from Lemma 7, we know that under condition F1 < 0, and if

1−D + p[R−R′ − q(R−D)]

1− pq
> R−D − G

pq

the value of the CoCo bond is higher because it prevents risk-shifting. Finally, the CoCo
bond makes it possible to invest in the project also if the banker has lower capitalization
than if subordinated debt is used. In fact, with subordinated debt there is an upper
bound to the amount raised, which is lower than the maximum amount that can be
financed using CoCo bonds. This is because

R−D − p(R−R′) > (1− pq)(R−D) ⇔ p(qR− qD −R +R′) > 0,

if F1 < 0.

Panel B presents the case G
pq

≤ pq(R−D), with a relatively low private benefit. An

undercapitalized banker, who needs to raise more than R −D − G
pq
, cannot do it using

subordinated debt. Hence, issuing CoCo bonds is the only financing channel for those
banks. The following proposition summarizes the result.

Proposition 3. Under Scenario 1 of Lemma 1, and for F1 < 0, subordinated debt is
dominated by non-dilutive CoCos.
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Panel A: G
pq

> pq(R−D)
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E

(1− pq)R− 1 + pqD +G

pR′ + (1− p)(R− 1) +G

R− 1

0 1−D R−D − G
pq

(1− pq)(R−D) R−D − p(R−R′)
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Panel B: p(R−R′) < G
pq

≤ pq(R−D)

P
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(1− pq)R− 1 + pqD +G
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Figure 10: Optimal value to the banker against the amount raised by issuing the security,
for F1 < 0 and assuming G

pq
> p(R − R′): CoCo bonds (black) vs subordinated debt

(blue).
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The key finding is that not only a non-dilutive CoCo is not dominated by junior
debt, but for high financing needs it is dominant, as it can avoid ex post moral haz-
ard. Moreover, there exists a value of P where CoCo is the only contract that can
provide financing. That is, banks with a sufficiently large financing gap may only afford
CoCo contracts. Moreover, CoCo delivers generally a higher value to the banker than
subordinated debt.

4.2 Non-voting shares

With equity financing, the design parameter is the fraction α of the payoff given to
outside equity holders. We focus on non-voting shares because the new equity holders
will not be given any rights on the private benefit from shirking, G. The expected payoffs
to the banker with equity financing are

ΠS
0 = (1− α)(R−D),

ΠS
1 = (1− α)[(1− p)(R−D) + p(R′ −D)] +G,

and
ΠS

2 = (1− α)(1− pq)(R−D) +G.

The following discussion will be based on two thresholds for α:

α0 = 1− G

p(R−R′)
, α1 = 1− G

pq(R−D)
.

We have the following preliminary results on equity financing.

Lemma 13. Under Scenario 1 of Lemma 1, and for F1 < 0, Design 0 is attained for
α < α0 and P S

0 = α(R−D).

Proof. The first best choice results if both conditions ΠS
0 > ΠS

1 and ΠS
0 > ΠS

2 holds,
which are equivalent to α < α0 and α < α1, respectively. Overall, the conditions require
α < min{α0, α1}. Because

α0 < α1 ⇔ G[(1− q)R−R′ + qD]

pq(R−D)(R−R′)
< 0,

and observing that (1 − q)R − R′ + qD < 0 is equivalent to F1 < 0, then Design 0 is
feasible for α < α0.

Lemma 14. Under Scenario 1 of Lemma 1, and for F1 < 0, Design 1 is attained for
α ≥ α0 and P S

1 = α[R−D − p(R−R′)].
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Proof. The conditions for Design 1 are ΠS
1 ≥ ΠS

0 and ΠS
1 ≥ ΠS

2 . As showed before,
the first condition is equivalent to α ≥ α0. The second condition does not impose any
restriction on α, because it is gives R′ −D− (1− q)(R−D) > 0, which is equivalent to
F1 < 0.

Lemma 15. Under Scenario 1 of Lemma 1, and for F1 < 0, Design 2 is infeasible.

Proof. For Design 2 to be feasible, it should be ΠS
2 > ΠS

0 and ΠS
2 > ΠS

1 . However,
we have shown that the first is equivalent to α > α1 and the second is never true for
F1 < 0.

From the analysis above, for the banker’s program using equity financing, only De-
sign 0 and 1 are available:

max
(i,α)

{
ΠS

i (α)−KS
i (α), subject to KS

i (α) ≤ 0
}

with the feasibility constraints specific for each design.

Lemma 16. With equity financing, under Scenario 1 of Lemma 1, and for F1 < 0, the
optimal values to the banker in each design is

E0
S = R− 1 for α >

1−D

R−D
and α ∈ [0, α0[,

E1
S = R− 1 +G− p(R−R′) for α >

1−D

R−D − p(R−R′)
and α ∈ [α0, 1].

Proof. With reference to Lemma 6, the optimal value in Design 0 is ES
0 = R− 1, which

is achievable if 1−D
R−D

< α0, that is R − 1 > (R−D)G
p(R−R′)

. If this condition is violated, Design

0 generates zero value to the banker. Design 1 generates a value of R− 1 +G− p(R−
R′) if 1−D

R−D−p(R−R′)
< 1, that is (1 − p)R + pR′ > 1, which is always satisfied under

Assumption 3.

Lemma 16 shows that two separate cases should be considered, depending on whether
R−1 > (R−D)G

p(R−R′)
, for which Design 0 delivers R−1, or R−1 ≤ (R−D)G

p(R−R′)
, for which Design 0

has zero value for the banker. This is summarized in the following lemma.

Lemma 17. Under Scenario 1 of Lemma 1, and for F1 < 0,

1. if R− 1 > (R−D)G
p(R−R′)

,

• for α ∈ [0, α0[ such that the budget condition α > 1−D
R−D

, Design 0 is optimal;

• for α ∈ [α0, 1] such that condition α > 1−D
R−D−p(R−R′)

, Design 1 is optimal.
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2. if R− 1 ≤ (R−D)G
p(R−R′)

,

• for α ∈ [α0, 1] such that condition α > 1−D
R−D−p(R−R′)

, Design 1 is optimal.

We finally state the optimality of using non-voting share to finance the project as a
function of the capital raised from outside.

Proposition 4. Under Scenario 1 of Lemma 1, and for F1 < 0 and G
pq

> p(R−R′),

1. if R− 1 > (R−D)G
p(R−R′)

,

ES(P ) =

{
R− 1 if P S ∈ [1−D,R−D − R−D

p(R−R′)
G[

pR′ + (1− p)R− 1 +G if P S ∈ [R−D − R−D
p(R−R′)

G,R−D − p(R−R′)]

2. if R−1 ≤ (R−D)G
p(R−R′)

, ES(P ) = pR′+(1−p)R−1+G if P S ∈ [1−D,R−D−p(R−R′)].

Proof. With reference to Lemma 17, Design 0 can be financed and delivers a positive
banker’s value in Case 1, where R−1 > (R−D)G

p(R−R′)
. Under the assumptions, the break-even

price of equity issuance is

P S =

{
α(R−D), if α ∈ [ 1−D

R−D
, α0[,

α[R−D − p(R−R′)], if α ∈ [max{ 1−D
p(R′−R)+R−D

, α0}, 1].

P S is monotonically increasing in α, so it suffices to calculate the value at the boundaries
of the relevant intervals. Where Design 0 is optimal, the capital raised by the bank by
issuing equity is P S( 1−D

R−D
) = 1−D. The maximum amount with Design 0 is P S(α0) =

R−D − R−D
p(R−R′)

G.

For Design 1, the maximum amount is P S(1) = R − D − p(R − R′), and it is
always greater than the maximum amount from Design 0 under the assumptions of the
proposition. This is because F1 < 0, which is equivalent to q(R−D) > (R−R′), that is
R−D

p(R−R′)
G > G

pq
. Also, G

pq
> p(R−R′) by assumption. Hence, for the maximum amounts

under the two designs, R−D−p(R−R′) > R−D− R−D
p(R−R′)

G, that is R−D
p(R−R′)

G > p(R−R′).
But this exactly what the two assumptions imply.

As for the minimum amount, if 1−D
p(R′−R)+R−D

> α0, the minimum security price is

P S( 1−D
p(R′−R)+R−D

) = 1−D. Otherwise, if 1−D
p(R′−R)+R−D

< α0, it is

P S(α0) = R−D − R−D

p(R−R′)
G− p(R−R′) +G.
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The minimum amount raised by Design 1 is lower than the maximum amount raised by
Design 0, because 1−D < R−D − R−D

p(R−R′)
G, and

R−D − R−D

p(R−R′)
G− p(R−R′) +G < R−D − R−D

p(R−R′)
G.

As E0
S > E1

S, the banker chooses Design 0 over Design 1 when both are feasible. Namely,
Design 1 is optimal only if P ∈]R−D − R−D

p(R−R′)
G,R−D − p(R−R′)].

In Case 2, Design 0 gives zero value to the banker. Consequently, the banker can
only issue non-voting shares under Design 1. This case is defined by α0 ≤ 1−D

R−D
, and

because 1−D
R−D

< 1−D
p(R′−R)+R−D

, then α0 <
1−D

p(R′−R)+R−D
. Therefore, the minimum security

price of Design 1 is P S( 1−D
p(R′−R)+R−D

) = 1−D. Overall, Design 1 is optimal and delivers

E1
S if P ∈ [1−D,R−D − p(R−R′)].

Finally, we compare CoCo bonds to non-voting shares in Figure 11, which shows
that the maximum amounts that can be raised from CoCo bonds (black) and non-
voting shares (red) are the same. As we focus on the case F1 < 0, neither of them

encourages the banker to shift risks. In Panel A, for R − 1 > (R−D)G
p(R−R′)

, for designs that
achieve first best, the banker raises more capital by issuing CoCo bonds. In particular,
for P ∈ [R − D − R−D

p(R−R′)
G,R − D − G

pq
[, non-voting shares fail to avoid the shirking

action and deliver an inferior value to the banker, pR′ + (1 − p)(R − 1) + G, while the
safe design with CoCo achieves R − 1. If the amount of capital raised from outside is
higher than R−D− G

pq
, CoCo bond are not dominated. Panel B displays the case with

R − 1 ≤ (R−D)G
p(R−R′)

where the safe design with non-voting shares is never affordable and

Design 1 is the only option. For P ∈ [1−D,R−D− G
pq
[ Design 0 can be implemented with

CoCo bonds and it generates a higher banker’s value than non-voting shares. For higher
external financing needs, CoCo bonds are not dominated. The following proposition
summarizes the result.

Proposition 5. Under Scenario 1 of Lemma 1, and for F1 < 0, non-votings share are
weakly dominated by CoCos.

The intuition of the result is that CoCo bonds are better than non-voting shares
at mitigating both moral hazard problems, because equity inflexibly allocates a fixed
fraction of wealth to outsider financiers, independently of the outcome. If the design is
meant to avoid shirking, the banker should keep a large fraction to compensate the loss of
private benefit, which leads to less pledgeable income for outside financiers. Differently
from non-voting shares, the CoCo bond is less rigid as it allows to tune the contract to
the outcome, using the face value, F , and the conversion fraction, λ. In other words, a
CoCo bond allows the banker to keeps the upside in the good state and a small fraction
of wealth upon conversion in a bad state. The latter not only corrects ex-ante incentives
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Panel A: 1−D < R−D − R−D
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pq
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pq
R−D − p(R−R′)

0

1

Panel B: R−D − R−D
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Figure 11: Optimal value to the banker against the amount raised by issuing the security:
CoCo bonds (black) vs non-voting shares (red).
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but also leaves a higher pledgeable income. Remarkably, there are values of P for which
CoCo bond is the only optimal contract that can be used by the banker in our setup.

5 Empirical analysis

In this section, we test the main conclusions from our theory using empirical data.
Because CoCo bonds became popular just after the last financial crisis, empirical studies
in this area are limited. So far, the empirical literature has been focussing on the
determinants of CoCo issuances. ? show, in emerging economies, that banks with higher
regulatory capital ratios and lower loan levels are more likely to issue CoCo bonds. In
Europe (in particular, the European Economic Area), ? find that CoCos are more
attractive for riskier banks. This result is also supported by ?, who use global data and
find that most of CoCo issuances was done by banks characterized by high systematic
risk. The common denominator of these studies is that is larger banks, which are likely
to have a stronger exposure to market risk, tend to be the main issuers of CoCos.

Different from those contributions, the hypotheses built on our theory focus on the
post-CoCo issuance behavior of a bank. Only few papers test empirically whether the
risk-taking behavior of CoCo issuers is different from the one of non-issuers, and they
provide mixed results regarding how CoCo bonds impact the volatility of bank assets.
? and ? focus on the pricing side of CoCo bonds and show that CoCo investors seem to
be aware of the fact that CoCos exacerbates agency problems. Our empirical analysis
allows us to analyze how the inclusion of CoCo bonds in banks’ capital structure affects
their risk appetite, that is how CoCos affect banks’ agency problems.

More recently, ? perform a duration analysis to analyze the determinants of the de-
cision to issue CoCos and estimate the changes in a bank’s credit risk (measured by the
CDS spread) after CoCo issuance. In particular, they focus on the impacts of two differ-
ent types of CoCo bonds: principal write-down (PWD) and equity conversion. They find
that equity conversion CoCo bonds significantly reduce a bank’ CDS spread, whereas
PWD CoCos have a weaker and not statistically significant effect on the CDS spread.
Since the conversion mechanism of both types of CoCo allow for loss absorption (and
PWD CoCo do so to a greater extent), they should both negatively impact CDS spreads,
if the risk-taking incentive of the bank remains unaffected. The authors conclude that,
if the overall effect is not statistically different from zero, then the risk-taking incentives
must increase after the issuance of PWD CoCo bonds, offsetting the positive effect of
loss absorption on banks’ credit worthiness. ? also use CDS spreads to test the effect
of CoCo issuance announcement on bank default risk. However, their results show that
PWD CoCo bonds outperform equity-conversion CoCo bonds, and on average, PWD
CoCo bonds reduce default risk in a similar fashion as common equity.
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The challenge or all these empirical studies is that it is hard to separate the two
offsetting effects of CoCo issuance on CDS spreads: negative on the credit worthiness
of the bank due to the improved regulatory capital, and positive on the risk of the
banks’ investments due to change of risk-taking incentives. We address this challenge
by focussing directly on the effect of CoCo issuance on the risk appetite of the bank,
rather that on its credit worthiness. To do this, we use loan spreads from the syndicated
loan market. Because syndicate loans allow firms to borrow from multiple banks, they
give us a way to compare the risk-taking behavior of different banks when lending to
the same borrower, which enable us to use the cross-sectional difference among banks in
the face of the same investment risk. To be specific, since multiple lenders participate
in one syndicated loan package, the financing needs of any individual firm can be stably
supplied without the concern of the change in lending policies of a specific lender. This
allows to control for the demand of funding over the time. We can then investigate how
the risk appetite of a bank changes regarding its lending activity in the syndicated loan
market by comparing the loan spreads for CoCo issuers vs non-issuers. Overall, our
empirical approach can address how asset risk in a bank is impacted by CoCo issuance,
which helps the identification of the risk-taking incentives.

5.1 Data and summary statistics

The analysis uses multiple data sources. First, the data on CoCo issuances is collected
from Bloomberg, from which we have that a total of 851 CoCos issuances occurred from
2009 to 2019. Our analysis focuses on the risk-taking behavior associated with bail-in
CoCo bonds. For this reason, we choose to focus only on global systemically important
banks (G-SIBs) because they are strictly regulated and have stronger incentives to issue
a security, like a CoCo bond, which gives regulatory benefit to comply with Basel III
while financing the increased capital ratio.

Due to different requirements, a CoCo bond could be classified as either Tier 1 (AT1)
or Tier 2 capital.14 Only AT1 CoCo bonds are assumed to be ‘bail-in’ securities. From
the Pillar 3 reports, we exclude ineligible AT1 CoCo bonds, which leaves us with 190
CoCo issuance over the sample period, for a total of 25 G-SIBs represented. In our
sample, the earliest AT1 CoCo issuance occurred in 2013, following with the update
of regulation. Within those G-SIBs, we find that most banks have never issued any
equity-conversion CoCo bonds and instead focused on PWD CoCo bonds. In Table 2,
we collected all the CoCo issuances by G-SIBs.

A CoCo bond is non-dilutive if its holder receives a lower amount than the principle
value upon conversion. CoCos with a lower conversion price than the stock price at the

14The key difference between Tier 1 and 2 CoCos is the going-concern contingent capital requirement.
Under Basel III, the minimum trigger level (in terms of CET1/RWA) required for a CoCo to qualify as
AT1 capital is 5.125%.
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conversion date benefit the holder. In this case, the conversion ratio γ in equation (2) is
greater than 1 and the CoCo bond is dilutive for the incumbent shareholders. In contrast,
if the stock price is lower than the conversion price, that is γ < 1, the conversion event
is non-dilutive for the shareholders. In the context of our model, Design 1 CoCo bonds
are equity-conversion CoCos of this second type, with high conversion prices vis-à-vis
the stock prices. The extreme case of PWD CoCos correspond to the case γ = 0.

Table 2 shows that the CoCos issued so far are predominantly non-dilutive, which is
puzzling given the theoretical literature criticizes their ability to stabilize the financial
system. From Panel B in Table 2, only one bank from non-UK countries issued equity-
conversion CoCo bonds, while all the other banks only issued PWD CoCos, which are
the most non-dilutive for incumbent equity holders. In the UK, although G-SIBs did
not issue PWD CoCos, the conversion price is significantly higher than the stock price
at the beginning of the COVID pandemic to make them highly non-dilutive for the
shareholders.

Second, we need data related to the syndicated loan market, which is a very important
market for worldwide corporate financing (?). The data source of syndicated loans is
Reuters’ DealScan database. Indeed, almost all loans in DealScan are syndicated loans.
The advantage of using data from this market is that a firm borrows from a group of
lenders. Even if some of the lenders change their lending behavior, the firm could still
get financed from the rest of the syndicate. Therefore the syndicated loan market is
attractive and provide a stable supply of funding for firms. More importantly, loan
spreads are different across different facilities within the same loan package taken by
a firm. That is, banks participating in the same package do not necessarily share the
same pricing strategy, but may have differentiated ones, which arguably reflect their
risk-attitude.

A drawback of using syndicated loan market data is that on average two-thirds of
banks’ share of volumes for each loan facility are not all recorded, which limits the extent
of our investigation regarding the total volume of loans a bank lends every year. Besides,
we keep only syndicated loans with recorded facility amounts, because a larger facility
size shows that the borrower has a higher leverage ratio and higher default risk. As
banks would charge a higher spread in this case, we use the facility amount to control
for the overall risk of the borrower.

We aim at tracking the pricing strategy of banks to measure how much a bank asks
for compensating the risk it bears. Therefore, we use loan spreads, which are available
from DealScan, to capture the pricing difference. We end up with 88,554 loan facilities
with at least one G-SIBs in the syndicate in the period from 2007 to 2019.

As for the contracting date, we use the deal active date because it is usually the start
date of the first facility among all the facilities within the same package. ? reports that
it could take a bank more than three months to approve a term sheet, and therefore he
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Table 2: Active CoCos from G-SIBs

This table shows the type of AT1 CoCos issued by G-SIBs from 2013 to 2019. Panel A reports CoCos
from UK banks and Panel B from non-UK banks. For UK banks, the conversion price is collected from
the terms of the CoCo contracts and stock price is recorded at the opening of April 20, 2020. For PWD
CoCos the conversion prices are not shown in contracts, and stock prices are not needed for comparison.

(a) Panel A: UK banks

Parent Active CoCos Weight in Tier 1 capital PWD Conversion Price Stock Price.

HSBC 13 13.59% N £2.70 £4.16
Barclays 11 19.57% N £1.65 £0.91
Lloyds 7 17.37% N £0.63 £0.31
RBS 3 11.32% N $2.28 $1.33
SC PLC 4 12.80% N £5.96 £4.09

Subsidiary Active CoCos Weight in Tier 1 capital PWD Conversion Price Stock Price.

HSBC bank 5 19.16% Y - -
Lloyds bank 7 16.36% Y - -
Natwest Holdings 2 14.67% Y - -

(b) Panel B: Non-UK banks

Parent Active CoCos Weight in Tier 1 capital PWD Conversion Price Stock Price.

BoC 1 2.20% Y - -
BNP Paribas 8 7.66% Y - -
Deutsche Bank AG 4 10.57% Y - -
ICBC 1 3.01% Y - -
CCB 1 1.81% Y - -
Agricultural Bank of China 1 6.18% Y - -
Credit Suisse Group 7 17.81% Y - -
Groupe BPCE 0 0 - - -
Groupe Crédit Agricole 4 4.02% Y - -
ING Group 5 12.15% N Unknown -
Mizuho FG 9 19.35% Y - -
Santander 4 17.16% Y - -
Société Générale 9 18.35% Y - -
SM FG 6 6.22% Y - -
UBS Group 13 31.53% Y - -
Unicredit Group 4 6.58% Y - -
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sets the contracting date as 90 days prior to the start date. We adopt his approach in
our robustness checks.

Third, we use bank-level information taken from Bureau van Dijk’s BankFocus, which
provides balance sheet information and regulatory variables for banks. We focus on 33
banks that are or have been G-SIBs. The list of G-SIBs is in Table 6 in Appendix C.
We choose Moody’s Investors Service as the accounting sub-template, which provides
comprehensive data for most banks from 2010 to 2019 (except for UBS, which is missing
after 2018, and therefore the last two years for UBS are dropped from the sample). We
use consolidated data to capture the accounting performance of the banks.15 We set
years 2010-2011 in the sample to be the pre-regulation period and 2012-2019 the post-
regulation period. We exclude 2011 from the post-regulation period because the release
of ? happened in October 2011, and no AT1 CoCo bonds were issued before 2013, which
shows it took time for banks to adopt the new regulatory change.

We match the data across the three database and report the summary statistics
of the final sample in Table 3. For loan characteristics, we use All-in-drawn spread
as the measure of lending risk. As defined by DealScan, the All-in-drawn spread (in
basis points) is the incremental interest rate the borrower pays over LIBOR, and it
includes fixed and upfront fees and variable credit spread that the borrower pays for each
dollar drawn down under the loan commitment. In the sample All-in-drawn spreads
have outliers and the maximum and minimum values are 2000 and 1.75 basis points
respectively. After checking the facilities from the same borrowers in the same or adjacent
years, we conclude that those outliers are caused by recording errors. Thus, we drop
all observations in the first and last percentile and report the results in Table 3, which
shows that the remaining All-in-drawn spreads still present a reasonable variation.

5.2 Empirical strategy

Our theory predicts that non-dilutive CoCos reduce the risk-shifting incentives of an
undercapitalized bank. Therefore, banks replacing subordinated debt with CoCo bonds
in the capital structure should have a reduced risk appetite, everything else equal.

Our empirical analysis is designed to check the changes in lending strategies of banks
after the CoCo issuance. We construct a Diff-in-Diff (DiD) estimator for which the event
is a bank’s first CoCo issuance. A baseline model is regressed, where the treated banks
are those which issued CoCo bonds during the sample period. This regression aims at
directly tracking changes in banks’ risk appetite after including CoCo bonds in their
capital structure. The risk appetite in our analysis is gauged by the loan spreads that a
bank charges to a specific borrower. Based on the model, we predict that banks which

15In Bankscope, We collect indexes with C∗ consolidation code.

38



Table 3: Summary Statistics

Descriptive statistics for the merged sample from three sources: (1) syndicated loans lent by G-SIBs
from 2010 to 2019, (2) bank characteristics, lagged accounting and regulatory variables of G-SIBs from
2009 to 2018, (3) CoCo issuance occurred from 2009 to 2019.

N mean sd min max p1 p5 p10 p90 p95 p99

Loan characteristics
All-In-Drawn (bps) 83,028 244.0 144.3 28 825 45 75 100 450 500 725
Facility amount (million $) 83,028 929.6 1,706 0.000820 48,501 6.318 29.13 57.99 2,150 3,323 7,500

Bank characteristics
Total Assets (million $) 83,028 1,632 692.8 156.8 4,042 274.1 749.9 806.9 2,558 2,693 3,103
Equity/Total Assets (%) 83,028 6.964 2.690 2.526 12.89 2.530 3.411 3.864 10.99 11.27 12.62
Total Equity (million $) 83,028 114.5 70.01 13.74 341.2 20.38 41.64 45.38 214.0 243.5 267.1
Quick Ratio (%) 83,028 42.17 12.52 19.93 78.72 23.52 27.08 28.86 59.59 71.68 77.00
Deposits and Short-term

Funding (million $) 83,028 951.9 513.0 120.9 3,514 222.3 268.9 422.4 1,501 1,672 2,668
Customer Deposits (million $) 83,028 772.3 460.3 39.34 3,124 63.81 156.0 305.9 1,340 1,382 2,216
Net Income (million $) 83,028 7.962 9.216 -18.73 45.15 -9.162 -3.044 -1.543 22.22 23.61 29.66
Tier 1 ratio (%) 83,028 13.29 2.090 7.740 22.30 9.250 9.970 10.90 16.10 16.98 19.30

have issued CoCo bonds tighten their lending activities by charging a higher spreads,
everything else equal.

Loan spreads change due to both demand- and supply-side effects in the loan market.
Our test concentrates on the lending strategies of fund-suppliers, so the demand of
funds must be controlled for. Our methodology follows ? and ?, who control for the
loan demand and bank characteristics. Moreover, we assume the loan demand for each
borrower is constant within one year so that we use borrower-year fixed effect to control
for the time-varying loan demands for each firm and the cross section of firms.

We are upfront on the fact that a tightened lending strategy can result in both a
reduction in loan volumes and an increase in loan spreads, the two being not mutually
exclusive. In other words, a more “risk averse” bank invests less into risky loans and asks
for a higher return to compensate the risk. However, as we mentioned before, DealScan
data is not sufficient to perform a loan volume analysis, because of the large number of
missing values of individual banks’ portion of a given loan facility. We therefore focus
the test on loan spreads only. In this respect, the pricing heterogeneity under the same
package allows us to track the risk appetite of a bank.

In the DiD method, the parallel trends assumption requires that both treatment
and control groups behave similarly before the event. However, that cannot be directly
checked in our setup, because each bank has a different event date. If all banks started
issuing CoCos at the date the new regulation was released we would use the same event
date for all of them. Instead, banks made their own choice as for the adoption of CoCo
bonds. For this reason, we have to check the robustness of our result using an alternative
approach, in which the pre-event period of the treatment group is set to be one year
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Figure 12: Pre-event density of All-in-drawn spreads.

This figure compares the characteristics of the loans of the control group vs. the treatment group before
the event. Panel A shows the density of All-in-drawn spreads (in basis points), Panel B the density of
the natural logarithm of the loaned amounts.
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before the first CoCo issuance for a bank. In what follows, we compare the lending
behavior of the treated banks in the pre-event year with the controlled banks’ lending
activity over the whole sample period.

The characteristics of the loans observed before the event in the treatment group are
compared to those of the loans in the control group. In Figure 12, Panel A shows the
density of All-in-drawn spreads, Panel B the density of the amounts of the participated
facilities. The comparison shows a similar lending behavior for the banks in the two
groups, as they originate loans in a similar spread range and with similar distribution
and average (around 180 basis points). Also, both treatment and control group of banks
are similar as per the amount of lended capital of the participated loan. Because the
pre-event lending strategies of banks in the treatment and the control group are similar,
the DiD approach captures the change in lending behavior related to the first issuance
of CoCos.

Our baseline specification is

Spreadi,b,l,t = αb,t + β0Treatl + β1DiDl,t−1 + γ1Xl,t−1 + γ2Yi,t + ϵi,b,l,t, (4)

with borrower-year fixed effects to control for the time-variant demand change. In (4), i
is the index of loan facilities, b for borrower, l for lender; αb,t is the borrower-year fixed
effects, which controls the loan demands; Treatl is an indicator of the treatment group,
which equals one if the bank is in a country where CoCo bonds qualifies as AT1 capital;
DiDl,t is the interaction term between the treated banks and the first CoCo issuance,
which equals one if the treated banks had issued at least one CoCo bond before the end
of the year; Xl,t−1 is a vector of lagged controls given by bank characteristics; Yi,t is a
vector of control given by loan characteristics. We estimate this model at loan level.

40



The coefficient β1 gauges the change in the treated banks’ risk-taking incentives due
to CoCo issuance. We expect a negative correlation between the loan spreads and the
bank’s risk-appetite. The advantages of tracking the loan spreads directly is that banks
set loan rates based on accessible information. Although the loan performance could
be affected by shocks that not related to banks’ risk preferences, focussing on the loan
spreads isolates banks’ risk-appetite at the contracting date.

5.3 Results

Table 4 provides the results of our analysis with the baseline model. Standard errors
are clustered at the lender’s level. The treatment group of the baseline model contains
banks with at least one CoCo issuance during the sample period. Besides, loan demand
and time-variant borrower characteristics are captured by the borrower-year fixed effect.
The fixed effect model allows us to observe the difference in lending strategies when
banks lend to an average firm. While the demand of loans are controlled for, a bank
with a low risk appetite would choose to invest less and/or increase the loan spread.

The estimated coefficient β1 demonstrates that CoCo issuers ask for a higher com-
pensation for the credit risk of the borrower. Across all models, the coefficient of DiD
is always positive, and in Models (1) to (5) it is significant at 5% level, which supports
the hypothesis that the treated banks ask for a higher spread on loans after their first
CoCo issuance. At the same time, the estimate of β0, the coefficient of Treat, is never
significant, which suggests that there is no significant difference between treatment and
control groups before a CoCo issuance. Namely, they would charge a similar loan spread
when they lend to the same borrower. However, after a CoCo issuance, the treated
banks alter their pricing standard and demand higher returns, which support our theory
that non-dilutive CoCo contribute to changing the risk attitude of banks, everything
else equal.

Although some of the bank characteristics do not have a significant impact on pric-
ing strategies, the coefficients of deposits and short-term funding, deposit ratio, and
customer deposits are statistically significant and their negative sign supports our the-
ory. That is, banks with higher level of deposits face more severe risk-shifting agency
issues, so they tend to relax their lending standards and provide cheaper funds to the
market, or equivalently, they require a lower premium in the face of the same credit risk.
The negative relationship between those measures of bank leverage and the All-in-drawn
spread suggest lenders with higher leverage charge lower loan spreads in the syndicated
loan market.

We check the robustness of the baseline regression by using the contracting date as
the active date of a facility, as opposed to the date the borrower starts using the facility.
The contracting date is identified as 90 days prior to the facility start date in ?. The
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Table 4: Baseline model

This table reports the empirical test of the baseline Diff-in-Diff model. The dependent variable is the
All-in-drawn spread required by the participant banks. The banks in the treatment group have issued
at least one AT1 CoCo bond during the sample period from 2010 to 2019. The model evaluates the
effects on the spread of the participated facilities by treated banks vis-à-vis the banks that never issued
CoCo bonds. In Models (1), (4), (7) and (8), Facility size is natural logarithm of the loan amount.
Except for Model (1), the other models control for bank characteristics: equity-to-asset ratio, deposits
and short-term funding, customer deposits, net income, Bank size(the natural logarithm of a bank’s
total assets) and Deposit ratio(customer deposits over total assets). Standard errors are clustered at
the lender’s level.

(1) (2) (3) (4) (5) (6) (7) (8)

DiD 1.408** 1.438** 1.640** 1.392** 1.252** 1.308* 1.214* 1.278*
(2.344) (2.358) (2.154) (2.324) (2.107) (1.966) (1.914) (1.962)

Treat 0.495 -0.359 -0.336 0.487 0.600 0.573 0.539 0.356
(0.507) (-0.346) (-0.457) (0.502) (0.604) (0.608) (0.562) (0.406)

Facility Size 1.596** 1.591** 1.589**
(2.233) (2.220) (2.217)

Equity/Total Assets -0.223 0.0223 0.0351 0.0271
(-1.036) (0.121) (0.211) (0.152)

Deposit Ratio -6.388***
(-2.854)

Bank Size 0.620 0.851 0.554 0.746
(1.042) (1.521) (0.944) (1.243)

Deposits and Short-term Funding -0.00219** -0.00197**
(-2.500) (-2.199)

Customer Deposits -0.00309** -0.00267**
(-2.683) (-2.317)

Net Income 0.0165 -0.0137
(0.344) (-0.264)

Constant 243.3*** 245.3*** 246.7*** 233.8*** 240.7*** 239.1*** 231.6*** 230.6***
(370.4) (142.4) (270.9) (58.11) (52.54) (58.46) (37.53) (49.13)

Observations 83,028 83,028 83,028 83,028 83,028 83,028 83,028 83,028
R-squared 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887
Borrower*Year FE YES YES YES YES YES YES YES YES

Robust t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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loan date could be crucial for analyzing banks’ lending behavior in our analysis. As a
direct consequence, the contracting date is no longer necessary to be the same for all
the facilities in one package. On the demand side, the total amount of loans that each
firm borrows in each year changes accordingly. Also, one may argue loan spread reveals
the lenders’ risk appetites at the time the loan is contracted, rather than when it is
used. Therefore, using the contracting date should provide more accurate results, as
the changed bank’ risk appetite due to the adoption of CoCo should be more clearly
reflected in the offered loan spreads.

The results in Table 5 delivers the same conclusion as the baseline model. The sign
of the coefficient of DiD is confirmed and is statistically more significant than in the
baseline analysis. With the borrower-year fixed effects, both suggest that, with CoCo
bonds in the capital structure, banks on average charge a higher premium for the same
borrower in the same year. On the other hand, banks that have more deposits tend to
have a stronger risk preference by charging a lower premium on average. Overall, the
robustness check confirms that our results are not driven by other events that happens
between the contracting date and active date.

6 Conclusions

In this paper, we empirically document the prevalence of non-dilutive CoCos — practi-
cally all AT1 CoCos issued by G-SIBs are non-dilutive — despite the initial envisioning
that CoCos need to be dilutive to penalize and deter bank shareholders’ risk-taking. We
further show that, although CoCos are non-dilutive in market practice, they are still
associated with more prudent lending strategies of banks using loan-level data from the
syndicated loan markets. To understand the prevalence of non-dilutive CoCos and the
risk-taking incentives that they provide, we build an agency model with two subsequent
moral hazard actions: a bank may (1) slack on its loan screening effort and (2) take
on further risks to gamble for resurrection when the lack of screening already results
in losses and will trigger CoCo conversion. We show that non-dilutive CoCos preserve
shareholders’ value after the bank has made losses and prevent gambling for resurrection.
This, however, compromises the shareholders’ incentives to properly screen loans in the
first place. In other words, the answer to the question of how non-dilutive CoCos affect
bank risk-taking can be subtle and state-contingent. In determining the dilutiveness
of the hybrid security, one needs to strike a balance between preventing ex-ante and
ex-post risk-taking.

We show that the design of CoCos can crucially depend on the equity capitalization
of the bank. Since the non-dilutive CoCos tackle only the gambling for resurrection
problem and therefore concede less rent to the management/owners of the bank, they
generate more pledgeable income and relax the financing constraint for the bank. This
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Table 5: Robustness check

This table reports the empirical test of the baseline Diff-in-Diff model. The difference from Table 4 is
the starting date of each facility is the contracting date, following ?. The dependent variable is the
All-in-drawn spread required by the participant banks. The banks in the treatment group have issued
at least one AT1 CoCo bond during the sample period from 2010 to 2019. The model evaluates the
effects on the spread of the participated facilities by treated banks vis-à-vis the banks that never issued
CoCo bonds. Except for Model (1), the other models control for bank characteristics: equity-to-asset
ratio, deposits and short-term funding, customer deposits, net income, Bank size(the natural logarithm
of a bank’s total assets) and Deposit ratio(customer deposits over total assets). Standard errors are
clustered at the lender’s level.

(1) (2) (3) (4) (5) (6) (7) (8)

DiD 1.464*** 1.461*** 1.652** 1.451*** 1.371*** 1.413** 1.272** 1.443**
(2.901) (2.893) (2.682) (2.884) (2.775) (2.374) (2.159) (2.652)

Treat 0.215 -0.325 -0.490 0.212 0.553 0.537 0.405 0.0156
(0.238) (-0.374) (-0.803) (0.236) (0.576) (0.575) (0.423) (0.0177)

Facility Size 1.226** 1.220** 1.218**
(2.145) (2.130) (2.124)

Equity/Total Assets -0.139 0.0826 0.134 0.0973
(-0.709) (0.472) (0.874) (0.585)

Deposit Ratio -5.759***
(-2.852)

Bank Size 0.606 0.906 0.411 0.887
(1.033) (1.680) (0.718) (1.439)

Deposits and Short-term Funding -0.00187** -0.00125
(-2.352) (-1.465)

Customer Deposits -0.00267** -0.00238**
(-2.523) (-2.248)

Net Income -0.00658 -0.0410
(-0.142) (-0.834)

Constant 243.0*** 244.3*** 246.0*** 235.7*** 239.6*** 237.4*** 233.5*** 231.2***
(357.7) (162.8) (308.2) (73.66) (55.33) (61.32) (50.60) (63.51)

Observations 84,220 84,220 84,220 84,220 84,220 84,220 84,220 84,220
R-squared 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890
Borrower*Year FE YES YES YES YES YES YES YES YES

Robust t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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makes such CoCos particularly attractive to less-than-ideally capitalized banks, even
though the only partially addressed risk-taking problem negatively affects the overall
value of the bank. On the other hand, fully dilutive CoCos can be attainable when
banks are better equity capitalized. Our model, therefore, shows that CoCos are no
substitute for banks’ equity capital, but rather the effectiveness of CoCos in preventing
risk-taking depends on banks’ equity capitalization. We also think that our theoretical
prediction opens routes for new empirical research, e.g., how the designs of CoCos are
related to banks’ equity capitalization or the cost of equity.

Finally, from a policy point of view, we provide a somewhat moderating view in the
debate of the usefulness and the regulatory treatment of CoCos. In light of the current
market practices, we are not unrealistically optimistic that CoCos will automatically
correct all risk-taking incentives with their dilutive features. But we are not entirely
pessimistic and consider non-dilutive CoCos necessarily inducing risk-taking either be-
cause we do obtain empirical evidence that non-dilutive CoCos are still associated with
more prudent lending strategies. Looking forward, we think more can be done for CoCos
to fulfill their role in promoting financial stability fully, and whether that is attainable
crucially depends on the equity capitalization of banks.
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A Case with F1 ≥ 0.

The baseline model is focused on the case F1 < 0, to emphasize the conversion mechanism

of CoCo bonds. In this appendix, we derive an equivalent analysis on CoCo bonds,

subordinate debt, and non-voting shares for the case F1 ≥ 0.

A.1 CoCo and subordinate debt

In the proof of Lemma 6, EC
1 > EC

2 is equivalent to R − D < R′−D
1−q

, which is violated

if F1 ≥ 0. Thus, the ‘necessary evil’ CoCo design is no longer optimal for any F . The

next lemma summarizes shows that Design 0 and Design 2 are the only two plausible

CoCo designs in this alternative scenario.

Lemma 18. Under Scenario 1 of Lemma 1, if F1 ≥ 0,

• for F ∈ [F2, F0], such that the budget condition F > 1−D is satisfied, Design 0 is

optimal;

• for F ∈]F0, R −D] such that the budget condition F > 1−D
1−pq

is satisfied, Design 2

is optimal.

Proof. Lemma 7 shows that Design 0 dominates Design 1 for F ∈ [F2, F0], independently

of F1. For F ∈ [F0, R−D], both Design 1 and Design 2 are feasible. But, as we proved

before, E2 > E1 is equivalent to R −D > R′−D
1−q

, which is equivalent to F1 > 0. Besides,

there is a higher threshold on F to achieve EC
1 for Design 1, as

1−D + p[(R−R′)− q(R−D)]

1− pq
≥ 1−D

1− pq
,

because R−R′ ≥ q(R−D) is equivalent to F1 ≥ 0. From this, we can conclude that, in

the interval ]F0, R −D], Design 2 delivers a higher value for lower F , which dominates

Design 1.

With Design 0 and Design 2, the payoff is either R or 0. Neither of the outcomes

triggers the conversion of the CoCo bond into equity, and the banker either repays the

face value of debt if the outcome is R, or defaults if it is 0. Consequently, CoCo bond
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and subordinate debt under Design 0 and Design 2 are equivalent securities and external

investors would pay the same price for them, when they have the same face value. The

optimality of CoCo contract vis-à-vis the price of the security follows Proposition 2, as

stated in the following proposition.

Proposition 6. Under Scenario 1 of Lemma 1, if F1 ≥ 0, the banker’s value as a

function of the amount raised by issuing CoCo bonds is

EC(P ) =

R− 1 if P F ∈ [1−D,R−D − G
pq
[

(1− pq)R− 1 + pqD +G if P F ∈ [R−D − G
pq
, (1− pq)(R−D)]

A.2 Non-voting shares

The next lemma indicates that, if F1 > 0, equity financing fail to prevent risk-shifting for

any value of α. In fact, even if the banker is allowed to keep the entire residual amount

with α = 1, the ex-post risk-shifting still generates a higher payoff to the banker.

Lemma 19. Under Scenario 1 of Lemma 1, and for F1 ≥ 0, Design 1 is infeasible.

Proof. For Design 1 to be feasible, it should be ΠS
1 > ΠS

0 and ΠS
1 > ΠS

2 . However,

we have shown that the first is equivalent to α > α0 and the second is never true for

F1 ≤ 0.

Lemma 20. Under Scenario 1 of Lemma 1, and for F1 ≥ 0, Design 0 is attained for

α < α1 and P S
0 = α(R−D).

Proof. The proof is the same as for Lemma 13, and then we observe that (1 − q)R −
R′ + qD ≥ 0 is equivalent to F1 ≥ 0. Then Design 0 is feasible for α < α1.

Lemma 21. Under Scenario 1 of Lemma 1, and for F1 ≥ 0, Design 2 is attained for

α ∈ [α1, 1] and P S
2 = α(1− pq)(R−D).

Proof. The conditions for Design 2 are ΠS
2 ≥ ΠS

0 and ΠS
2 ≥ ΠS

1 . As showed before,

the first condition is equivalent to α ≥ α1. The second condition does not impose any

restriction on α, because it is gives R′ −D− (1− q)(R−D) ≤ 0, which is equivalent to

F1 ≥ 0.
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Lemma 22. With equity financing, under Scenario 1 of Lemma 1, and for F1 ≥ 0, the

optimal values to the banker in each design is

E0
S = R− 1 for α >

1−D

R−D
and α ∈ [0, α1[,

E2
S = (1− pq)R− 1 + pqD +G for α >

1−D

(1− pq)(R−D)
and α ∈ [α1, 1].

Proof. With reference to Lemma 6, the optimal value in Design 0 is ES
0 = R− 1, which

is achievable if 1−D
R−D

< α1, that is R − 1 > G
pq
. This condition is always satisfied from

Assumption 8. Design 2 generates a value of (1− pq)R− 1+ pqD+G if 1−D
(1−pq)(R−D)

< 1,

that is (1− pq)R− 1 + pqD > 0, which is always satisfied under Assumption 6.

We finally state the optimality of using non-voting share to finance the project as a

function of the capital raised from outside.

Proposition 7. Under Scenario 1 of Lemma 1, and for F1 ≥ 0,

ES(P ) =

R− 1 if P S ∈ [1−D,R−D − G
pq
[

(1− pq)R− 1 + pqD +G if P S ∈ [R−D − G
pq
, (1− pq)(R−D)]

Proof. Under the assumptions, the break-even price of equity issuance is

P S =

α(R−D), if α ∈ [ 1−D
R−D

, α1[,

α(1− pq)(R−D), if α ∈ [max{ 1−D
(1−pq)(R−D)

, α1}, 1].

P S is monotonically increasing in α, so it suffices to calculate the value at the boundaries

of the relevant intervals. Where Design 0 is optimal, the capital raised by the bank by

issuing equity is P S( 1−D
R−D

) = 1−D. The maximum amount with Design 0 is P S(α1) =

R−D − G
pq
.

For Design 2, the maximum amount is P S(2) = (1−pq)(R−D). As for the minimum

amount, if 1−D
(1−pq)(R−D)

> α1, the minimum security price is P S( 1−D
(1−pq)(R−D)

) = 1 − D.

Otherwise, if 1−D
(1−pq)(R−D)

< α1, it is P S(α1) = (1 − pq)(R − D − G
pq
). The minimum

amount raised by Design 2 is lower than the maximum amount raised by Design 0,

because 1 − D < R − D − G
pq
, and (1 − pq)(R − D − G

pq
) < R − D − G

pq
. As E0

S > E2
S,
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P

E

(1− pq)R− 1 + pqD +G

R− 1

0 1−D R−D − G
pq

(1− pq)(R−D)

0

2

Figure 13: Optimal value to the banker against the amount raised by issuing the security:
CoCo bonds (black) vs non-voting shares (red) vs subordinated debt(blue) for F1 ≥ 0.

the banker chooses Design 0 over Design 2 when both are feasible. Namely, Design 2 is

optimal only if P ∈]R−D − G
pq
, (1− pq)(R−D)].

A.3 Comparison

In Figure 13, we compare the optimal value for the banker of using CoCo bonds (black),

non-voting shares (red) and subordinated debt (blue), as a function of the amount raised

from external financiers, for F1 ≥ 0. Notably, three securities deliver the same value to

the banker. For P ∈ [1−D,R−D− G
pq
[, all three securities deliver a first best outcome.

Similarly, with all three securities, the banker can only implement Design 2 if she needs

to raise a higher capital from outside, and her value is (1 − pq)R − 1 + pqD + G. The

following proposition summarizes the result.

Proposition 8. When F1 ≥ 0, none of those three security outperforms the others.

The intuition for this result is that none of them successfully prevents risk-shifting

when the outcome is R′. On the one hand, an undercapitalized bank chooses Design 2

and raises at most (1−pq)(R−D). On the other, a well-capitalized bank avoid shirking

by implementing Design 0, which limits the amount raised from outsiders. As we have

shown, these decisions solely depend on the bank’s financial condition and not on type of

security. Therefore, the three securities are perfect substitutes for F1 ≥ 0, which justify

our decision not to include this case in the main analysis.
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B Case with G
pq ≤ p(R−R′) and F1 < 0.

In the baseline model, we focus on the case with G
pq

> p(R−R′), where the upper bound

of security price with the non-dilutive CoCo bond is greater than the upper bound for

the price of the safe one. In this appendix, we analyze the case G
pq

≤ p(R−R′).

The optimality of CoCo bonds changes due to the dominated Design 1. Compared to

Proposition 1, the optimal equity value is now EC(P ) = R−1 if P ∈ [1−D,R−D− G
pq
].

For the financing needs higher than R − D − G
pq
, the banker can no longer afford it

because the maximum amount that Design 1 can raise is lower than R − D − G
pq

from
G
pq

> p(R−R′).

As for debt financing, Proposition 2 states Design 0 with subordinated debt is the

only optimal design that delivers a positive value to the banker if G
pq

≤ pq(R − D).

Given that G
pq

≤ p(R − R′) and p(R − R′) < pq(R −D) from F1 < 0, G
pq

≤ pq(R −D)

is always satisfied. Hence, the banker receives ED(P ) = R − 1 by issuing safe debt for

P ∈ [1−D,R−D − G
pq
].

Non-voting share is the only security that might still allow the banker to implement

Design 1. That is because the condition of no optimal Design 1 is R−D
p(R−R′)

G ≤ p(R−R′),

while R−D
p(R−R′)

G > G
pq

from Proposition 4. There are three possible cases:

1. G
pq

< R−D
p(R−R′)

G ≤ p(R−R′) < R− 1;

2. G
pq

≤ p(R−R′) < R−D
p(R−R′)

G < R− 1;

3. G
pq

≤ p(R−R′) < R− 1 < R−D
p(R−R′)

G.

In Case 1, similar to CoCo bonds and subordinated debt, Design 1 is dominated by

Design 0, and the optimal banker’s value is ES(P ) = R − 1 if P S ∈ [1 − D,R − D −
R−D

p(R−R′)
G[.

In Case 2, if p(R − R′) < R−D
p(R−R′)

G, the maximum value raised from Design 1 with

non-voting shares is greater than R − D − R−D
p(R−R′)

G. The ratio R−D
p(R−R′)

represents the

residual income after the deposit repayment in the R state over the value destroyed by

the shirking action. The higher value of it suggests the shirking action is less costly to
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the bank. As a result, the bank is able to payout a higher value to the outsiders. The

optimal equity value associated with this is

ES(P ) =

R− 1 if P S ∈ [1−D,R−D − R−D
p(R−R′)

G[

pR′ + (1− p)R− 1 +G if P S ∈ [R−D − R−D
p(R−R′)

G,R−D − p(R−R′)]

In Case 3, Design 0 is unaffordable and Design 1 is the only one delivering a positive

value: ES(P ) = pR′ + (1− p)R− 1 +G if P S ∈ [1−D,R−D − p(R−R′)].

It is worth noting that although Design 1 might be available for non-voting shares,

the maximum amount raised from it R − D − p(R − R′) is lower than R − D − G
pq
.

That is due to G
pq

≤ p(R − R′). That means Design 1 with non-voting shares is always

dominated by Design 0 with CoCo bonds and subordinated debt. In Figure 14, Panel

A, B and C represent the three cases considered above.

Overall, we can conclude CoCo bonds and subordinate debt would not create any

risk-shifting incentives, but non-voting share allow to raise less funds and possibly deliver

a lower value to the banker. Therefore, the banker would be indifferent to issuing safe

CoCo bonds and subordinated debt, and non-voting share would be dominated by either

of them.
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Panel A: G
pq

< R−D
p(R−R′)

G ≤ p(R−R′) < R− 1

P

E

R− 1

0 1−D R−D − R−D
p(R−R′)G R−D − G

pq

0

Panel B: G
pq

≤ p(R−R′) < R−D
p(R−R′)

G < R− 1

P

E

pR′ + (1− p)(R− 1) +G

R− 1

0 1−D R−D − R−D
p(R−R′)G R−D − G

pq
R−D − p(R−R′)

0

1

Panel C: G
pq

≤ p(R−R′) < R− 1 < R−D
p(R−R′)

G

P

E

pR′ + (1− p)(R− 1) +G

R− 1

0 1−DR−D − R−D
p(R−R′)G R−D − G

pq
R−D − p(R−R′)

0

1

Figure 14: Optimal value to the banker against the amount raised by issuing the security:
CoCo bonds (black) vs non-voting shares (red) vs subordinated debt (blue) for G

pq
≤

p(R−R′) and F1 < 0.

52



C Additional tables

Table 6 contains the sample of banks used in the empirical analysis. These banks are

or have been G-SIBs, in the period from 2011 to 2020, as identified by the FSB, in

consultation with the Basel Committee on Banking Supervision (BCBS) and national

authorities.

Table 6: Banks included in the empirical sample

AGRICULTURAL BANK OF CHINA LIMITED BANCO BILBAO VIZCAYA ARGENTARIA SA

BANCO SANTANDER SA BANK OF AMERICA CORPORATION

BANK OF CHINA LIMITED BANK OF NEW YORK MELLON (THE)

BARCLAYS PLC BNP PARIBAS

BPCE GROUP CHINA CONSTRUCTION BANK CO., LTD

CITIGROUP INC CREDIT AGRICOLE

CREDIT SUISSE GROUP AG DEUTSCHE BANK AG

GOLDMAN SACHS GROUP, INC HSBC HOLDINGS PLC

INDUSTRIAL & COMMERCIAL BANK OF CHINA ING BANK NV

JPMORGAN CHASE & CO MITSUBISHI UFJ FINANCIAL GROUP, INC.

MIZUHO FINANCIAL GROUP MORGAN STANLEY

NATWEST GROUP PLC NORDEA BANK ABP

ROYAL BANK OF CANADA SOCIETE GENERALE

STANDARD CHARTERED PLC STATE STREET CORPORATION

SUMITOMO MITSUI FINANCIAL GROUP, INC TORONTO DOMINION BANK

UBS AG UNICREDIT SPA

WELLS FARGO & COMPANY

53


